Effect of transcutaneous electrical nerve stimulation on hemodynamic variables: systematic review and meta-analysis

Lenara I. A. Chaves¹, Nayara M. de A. Ramos¹, Gerson C. Junior², Weder A. da Silva³, Francisco V. Lima⁴, Maria Eduarda P. da Silva⁵, Matheus A. Teixeira⁵, Gaspar R. Chiappa³

¹Physical Therapy, University Central of the Central Higlands Apparecido dos Santos (UNICEPLAC), Brasilia (DF), Brazil.

²Physical Therapy, University of Brasília (UNB), Brasília (DF), Brazil.

³Human Movement and Rehabilitation Post Graduation Program, Evangelical University of Goiás (UniEVANGELICA), Anápolis (GO), Brazil.

⁴Cancer Institute of São Paulo (ICESP), São Paulo (SP), Brazil.

⁵Physical Therapy, Evangelical University of Goiás (UniEVANGÉLICA), Anapolis (GO), Brazil.

Abstract:

Background: Transcutaneous electrical nerve stimulation (TENS) uses different combinations of frequency (low or high), excitation threshold (motor or sensory), and site of application (local or ganglion). Objectives: The present study aimed to investigate the acute effect of TENS on hemodynamic variables in different populations and to determine whether differences exist between low-frequency (< 10 Hz) and high-frequency (≥ 10 Hz) TENS, between motor and sensory excitability thresholds, and between local or ganglionic application. Methods: The Cochrane, EMBASE, SCOPUS, CINAHL, and PUBMED databases were searched for randomized clinical trials in which TENS was administered noninvasively with surface electrodes in the adult population (subjects aged 18 years or older). Results: Thirteen articles met eligibility criteria and included a total of 371 subjects. The outcomes were the effects of TENS on blood flow, peripheral vascular resistance, heart rate, systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean blood pressure (MBP). A moderate increase in blood flow was noted when high frequencies were applied at the sensory threshold and above the ganglion. A decrease in peripheral vascular resistance was noted when TENS was administered at the sensory threshold above the ganglion. Significant changes in MBP and DBP were noted when high frequencies were administered at the sensory threshold and a significant difference in MBP was noted when TENS was administered locally. Conclusion: The results show that TENS can modify hemodynamic responses. Moreover, it is important to determine the frequency, excitability threshold, and site of application to achieve the expected results.

Keywords: Transcutaneous electrical nerve stimulation; blood flow; vascular resistance.

BACKGROUND

Transcutaneous electrical nerve stimulation (TENS) is a noninvasive method that produces analgesic effects⁽¹⁾ and involves the administration of different combinations of frequency (low or high)⁽²⁾, motor excitability threshold⁽³⁻⁸⁾ or sensory excitability threshold⁽⁹⁻¹⁵⁾ and local application site⁽³⁻¹⁷⁾. This method has been used in a variety of clinical contexts for the treatment of various acute and chronic conditions and is considered a recognized analgesic modality^(1, 18). Physiologically, some studies have shown that TENS may affect blood flow and mechanisms of vasodilation^(15, 19) as well as blood pressure and heart rate^(4, 7, 11, 15). In addition, researchers indicate that the application of TENS over the stellate ganglion in the neck region between C7 and T4 can induce significant peripheral vasodilation^(10, 14, 15, 19).

Recently, Mortensen et al. showed that TENS, applied over the stellate ganglion 30 minutes before exercise, attenuated the skeletal muscle metaboreflex by redistributing blood flow to the upper limbs 20 and increasing peripheral vasodilator capacity, resulting in a reduction in blood pressure at the end of exercise in healthy adolescents and older

Corresponding author: Gaspar Rogério da Silva Chiappa E-mail:

gaspar.chiappa@gmail.com

Received: 17 June, 2023. Accepted: 02 Oct, 2023. Published: 12 Dec, 2023.

Copyright © 2023. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License which permits unrestricted non-commercial use, distribution, and reproduction in any medium provided the article is properly cited.

adults^(10, 15). These effects were also demonstrated in patients after myocardial revascularization. They resulted in a significant improvement in functional capacity and showed greater efficacy in improving blood flow under conditions of low peripheral blood flow⁽¹⁰⁾. Therefore, TENS is thought to have a beneficial effect on the sympathetic nervous system and influence the pressure reflex⁽²¹⁾. Neuromodulation may vary depending on the duration, intensity, and location of application⁽¹²⁾.

However, the literature is inconsistent on the use of these parameters. Researchers have not used them in a standardized manner, which increases the heterogeneity of the studies and makes it difficult to generalize the results. Studies have shown that changes in local circulation, such as myocardial oxygen supply and demand, depend on electrostimulation time^(16, 19, 22). Interestingly, authors have also noted other nonanalgesic effects, such as increased endogenous synthesis of vasodilators such as opioids^(4, 23), sympathetic modulation^{(24, 25),} and a reduction in peripheral vascular resistance⁽⁸⁾. Although these are isolated effects, these findings suggest that TENS may have an important influence on the increase in blood flow by altering the pressure reflex. These results support the hypothesis that TENS may be beneficial in various cardiovascular diseases such as arterial hypertension, myocardial ischemia, and heart failure.

Despite its cardiovascular effects, the use of TENS as a vasodilator has not been well established, mainly because few studies have compared the hemodynamic effects of TENS with a sham or control group. Accordingly, we believe that a meta-analysis comparing the vasodilatory effects of TENS with a sham or control group would be feasible and would help to determine clinical applicability more consistently. Therefore, the present study aimed to conduct a systematic review of studies addressing the effects of TENS on hemodynamic variables in different populations and to determine, whether differences exist between low-frequency (< 10 Hz) and high-frequency (\geq 10 Hz) TENS, between motor and sensory excitability thresholds, and between local or ganglionic application.

METHODS

Search strategy

We conducted a systematic review and meta-analysis in compliance with the recommendations and criteria described in the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and Cochrane Handbook⁽²⁶⁾. The protocol was registered in the PROSPERO database (www.crd.york.ac.uk/prospero/) under number: CRD42014015484.

Sources of data

Potential studies were identified using a comprehensive strategy. Systematic searches were conducted in the following databases: The electronic databases Cochrane Library (online version 2015), PUBMED (1962-2021), CINAHL (1980-2021), SCOPUS (1980-2021), and EMBASE (1980-2021) were searched to identify eligible articles. The search was limited to randomized clinical trials, and a filter was used to limit the search to human trials. The sensitive search strategy was used to identify randomized clinical trials. Additional studies were identified by manually searching the reference lists of retrieved studies, review articles and textbooks. The following keywords were used for the systematic search: ("Transcutaneous Electric Nerve Stimulation"[Mesh] OR "Electric Stimulation Therapy"[Mesh] OR "electroacupuncture"[MeSH Terms]) NOT ("Cardiac Resynchronization Therapy"[Mesh] OR "Spinal Cord Stimulation"[Mesh] OR "Cardiac Pacing, Artificial"[Mesh] OR "Deep Brain Stimulation"[Mesh] OR "Vagus Nerve Stimulation "[Mesh] OR "Pulsed Radiofrequency Treatment"[Mesh] OR "Vagus Nerve Stimulation "[Mesh]) AND ("Blood Pressure"[Mesh] OR "hemodynamics"[MeSH Terms] OR

"vasodilation"[MeSH Terms] OR "Arterial Pressure"[Mesh] OR "Cardiovascular Physiological Phenomena"[Mesh]) AND ((Clinical Study[ptyp] OR Clinical Trial[ptyp] OR Clinical Trial, Phase I[ptyp] OR Clinical Trial, Phase II[ptyp] OR Clinical Trial, Phase III[ptyp] OR Clinical Trial, Phase IV[ptyp] OR Controlled Clinical Trial[ptyp] OR Pragmatic Clinical Trial[ptyp] OR Randomized Controlled Trial[ptyp] OR Research Support, American Recovery and Reinvestment Act[ptyp] OR Research Support, N I H, Extramural[ptyp] OR Research Support, N I H, Intramural[ptyp] OR Research Support, Non U S Gov't[ptyp] OR Research Support, U S Gov't, Non P H S[ptyp] OR Research Support, U S Gov't, P H S[ptyp] OR Research Support, U.S. Government[ptyp]) AND "humans"[MeSH Terms] AND ("adult"[MeSH Terms] OR "young adult"[MeSH Terms] OR "adult"[MeSH Terms] OR ("middle aged"[MeSH Terms] OR "aged"[MeSH Terms]) OR "middle aged"[MeSH Terms] OR "aged, 80 and over"[MeSH Terms])).

Selection of studies

Three reviewers analyzed the results independently. Articles found during the searches were first screened by title and abstract to exclude irrelevant studies. For prescreening, the abstract had to include the study design to facilitate identification, the appropriate population, and the relevant components of the intervention, as described above. The full texts of all potentially relevant randomized clinical trials were obtained and independently reviewed by the reviewers for eligibility based on the defined inclusion criteria. Studies that addressed outcomes during a specific stimulus (eg, the hand-grip test) were included only if the effect of TENS was assessed before the stimulus⁽²⁷⁾. The degree of disagreement was measured by the kappa statistic.

Types of studies and participants

Articles published in full-text journals with a randomized and/or controlled clinical design examining the effect of TENS on peripheral blood flow, peripheral vascular resistance, heart rate, and blood pressure (systolic, diastolic, and mean) were included in the present review. Clinical trials that examined a cohort of adults (18 years of age or older) who were considered healthy or who had been diagnosed with cardiovascular or metabolic disease were included for review. Studies that examined patients with a cancer diagnosis or spinal cord injury, interventions that used functional electrical stimulation, electroacupuncture, or noninvasive spinal cord stimulation, and studies that did not address the primary outcome were excluded from the review.

Types of intervention

Studies that involved a direct comparison of TENS with sham stimulation or a control modality were included in the review. Studies that examined TENS separately by stimulation frequency (low: less than 10 Hz; high: \geq 10 Hz). TENS is an electrical current with a frequency between 1 and 250 hertz (Hz) applied noninvasively with surface electrodes. The sham intervention was defined as a treatment group using the same TENS equipment but without current. The control intervention was either the absence of treatment or a treatment modality other than TENS.

Outcome measures

The results used in this review were based on the main objective. We selected blood flow in absolute terms (ml/min) and excluded studies that assessed outcomes in relative terms (% or delta) or blood perfusion units. Vascular resistance was assessed in arbitrary units. Heart rate was evaluated as beats per minute (bpm) and blood pressure as mm Hg. All results were combined according to stimulation frequency, excitability threshold, and site of application.

Quality (risk of bias) and publication bias assessment

The risk of bias in eligible randomized clinical trials was assessed by a single reviewer and, in cases of doubt, reviewed by a second reviewer. Studies were independently classified by two reviewers (NM and LI) using the PEDro scale proposed by Verhagen et al.⁽²⁸⁾. The PEDro scale analyzes eligibility criteria (not used to calculate the score), random allocation, concealed allocation, similarity at baseline, blinding of subjects, therapists, and reviewers, adequacy of follow-up, intention-to-treat analysis, statistical comparisons between groups, analyzes and reports of point estimates, and measures of variability.

Data extraction

Relevant data were extracted on inclusion criteria (study design, participants, type, duration, frequency, and intensity of electrical stimulation, pulse, site of application, comparisons, and outcomes), risk of bias (randomization, blinding, attrition, and control), and outcomes. For studies that compared the effect of two or more electrical variables (eg, two pulse rates, studies that determined the effect in cohorts with different characteristics, such as age, and studies that determined the effect more than once), only those that had the largest effect size were included. Data extraction was performed by a single reviewer and reviewed by a second reviewer. Disagreements were resolved by consensus. If necessary, the authors were contacted for further details on the results.

Statistical analysis

Data were processed based on the Cochrane Handbook for Systematic Reviews of Interventions⁽²⁹⁾. For continuous variables, changes were compared using the weighted mean difference and 95% confidence interval (TENS group vs control group). The standard deviation was calculated for each study based on the change score method. Heterogeneity between studies was examined qualitatively by comparing the characteristics of the studies and quantitatively by using the chi-square heterogeneity test and the I2 statistic. Where appropriate, the results of the studies for each outcome were combined to determine the global estimate of the treatment effect. The effect model for the meta-analysis was selected based on the quantitative, qualitative, and publication bias analyses. All analyses were performed using Review Manager version 5.3.

RESULTS

Selection and evaluation of studies

The first search found 312 studies, of which 40 were duplicates. Two hundred ten studies were classified as potentially relevant based on the title and abstract. Seventy-five studies were subjected to full-text analysis, of which 62 were excluded^(16, 17, 19, 22, 30-84). Therefore, only 13 articles met the eligibility criteria⁽³⁻¹⁵⁾. Figure 1 shows the flowchart of the study selection process. The excluded studies and the reasons for exclusion are listed in Table 1.

Figure 1. Flow chart of studies.

Studies	Reason for exclusion
Chauhan et al. 1994; Cheung et al. 2007; Jacobs et al. 1990; Jacobsson et al.	
2000; Jessurun et al. 2003; Silverdal et al. 2012; Stein et al. 2011; Wikström	No control group
et al. 1999.	
Cramp et al. 2000; Cramp et al. 2002; Indergand et al. 1994; Kaada et al.	Absence of absolute values
1990; Sandberg et al. 2007; Scudds et al. 1995; Tomasi et al. 2015.	Absence of absolute values
Bieuzen et al. 2012; Chi-Chen et al. 2009; Chih-Feng et al. 2003; Clancy et	
al. 2014; Czyrny et al. 2010; Dobšák et al. 2012; Eschweiler et al. 2000;	
Farese et al. 2008; Gazelius et al. 2002; Hideaki et al. 2015; Hsiao et al.,	
2008; Indergand et al. 1995; Jung et al. 2011; Kemler et al. 2000; Khalil et	
al. 2007; Lawson et al. 2007; Meglic et al. 2011; Ming Ho et al. 2009; Ngai	Did not use TENS as main current.
et al. 2013; Noble et al. 2000; Perlmutter et al. 2002; Speer et al. 2000;	
Spincemille et al. 2000; Thijssen et al. 2007; Tordoir et al. 2007; Townsend	
et al. 2011; Yu-Xia et al. 2010; Zheng et al. 2014; Zheng-qin et al. 2014.	
Chen et al. 2007; Forst et al. 1997; Izumi et al. 2010; Johnson et al. 1991;	Mean and standard deviation values not
Laan et al. 2010 ²⁰ ; McDowell et al. 1999; Ngai et al. 2010.	expressed
Franco et al. 2014; Hallén et al. 2010; Maggie et al. 2011; Sanderson et al.	Did not present values before and after
1995.	administration of TENS.
Vilela-Martin et al. 2016	Protocol study
Kamali et al. 2017	Flow not evaluated as mL/min
Kjartansson et al. 1990	Not a clinical trial
Bertalhanfy et al. 2005; Jones et al. 2014.	Used TENS during exercise

Studies included in systematic review

Table 2 shows the average characteristics of all studies. The publication dates of the included studies ranged from 1984 to 2019 and included a total of 371 subjects, of whom 273 (68.7%) were male. The mean age was 29.2 ± 4.5 years and 32.6 ± 5.0 years for the healthy intervention and control groups, respectively. For groups that included patients with cardiovascular disease, the mean age was 56.5 ± 10.3 years and 61.9 ± 8.5 years for the intervention and control groups, respectively. Nine studies^(3, 4, 6-9, 12, 14) recruited healthy subjects, and four studies examined patients with cardiovascular disease ^(5, 10, 11, 13). Analysis of quality using the PEDro scale yielded scores ranging from 4 to 10. Overall, the quality of the majority of studies was rated as good (Table 3). The degree of interviewer agreement, calculated using the kappa coefficient, was 0.91 (95% CI 0.79-1.0).

Intervention

High-frequency (\geq 10 Hz) TENS was used more frequently. Five studies compared the effects of HF TENS with a control group^(3, 7-9, 13). Four studies compared the effects of HF with LF TENS^(3, 4, 8, 11). Two studies compared the effects of LF TENS with a control group^(3, 8). Seven studies compared the effects of HF TENS with sham stimulation^(4, 5, 10-12, 14, 15) and three studies compared the effects of LF TENS with sham stimulation^(4, 6, 11). The results were heterogeneous concerning the site of application of the electrodes: in the cervicothoracic sympathetic ganglion area in four studies^(10, 11, 14, 15), at acupuncture points in five studies^(4, 7-9, 13) and the lower limbs in three studies^(3, 6, 12). Table 3 provides an overview of the interventions used in the different studies.

Effect of TENS

The analyses of hemodynamic responses were performed according to the following TENS parameters: a) low and high frequency; b) motor or sensory excitability threshold; and c) local or ganglionic site of application.

Hemodynamic responses according to TENS frequency

Blood flow

For blood flow analysis, we found only one study that used low-frequency TENS⁽⁸⁾ and four studies that used high-frequency TENS^(7, 8, 10, 15); one study compared young and older adults^(14, 15). Overall, both LF and HF were associated with significant increases in blood flow (four studies, n = 176 subjects, weighted mean difference [WMD] = 0.52 ml/min, 95% confidence interval [CI] of 0.11 to 0.92 ml/min, I² = 79%) (Figure 2a). However, in the isolated analysis, the results of the analysis for LF were inconclusive (01 study, n = 40 subjects, WMD = 0.00 ml/min and 95% CI: -0.79 to 0.79 ml/min; I² = not applicable), whereas in the high-frequency analysis, an increase in blood flow was observed (Four studies, n = 136 subjects, WMD = 0.71 ml/min, 95% CI: 0.23 to 1.18 ml/min, I2 = 81%).

Peripheral vascular resistance and heart rate

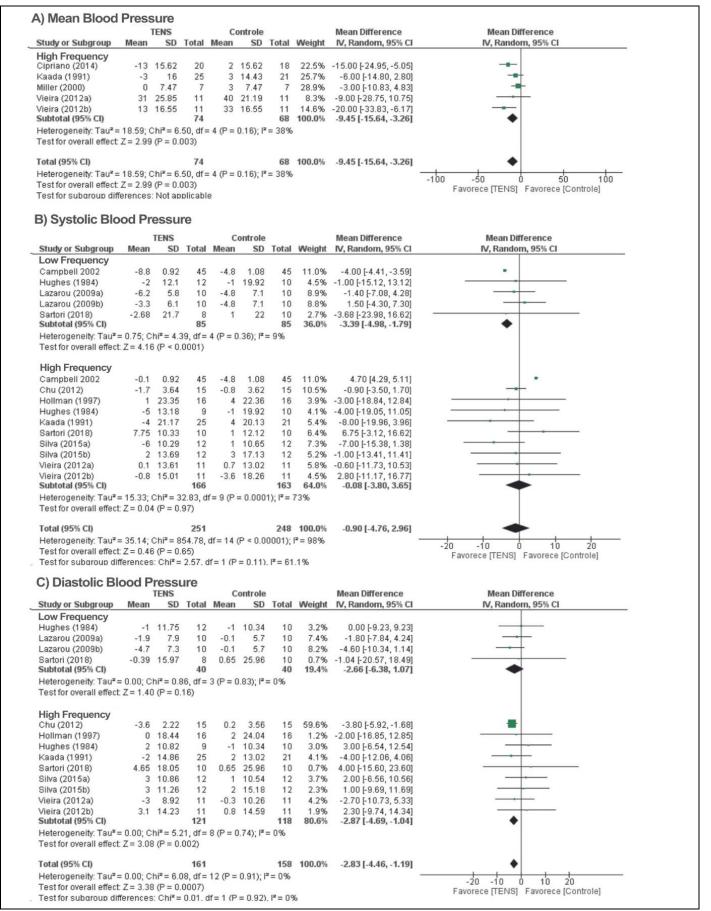
In the analysis of vascular resistance, neither LF nor HF was associated with improved PVR (Total: three studies, n = 98 subjects, WMD = -10.11 arbitrary units, 95% CI: -22.79 to 2.57 arbitrary units, I² = 83%; LF: 01 study, n = 40 subjects, WMD = -1.20 arbitrary units, 95% CI: -17.14 to 14.74 arbitrary units, I² = not applicable; HF: 02 studies, n = 58 subjects, WMD = -12.85 arbitrary units, 95% CI: -29.45 to 3.75 arbitrary units, I² = 88%) (Figure 2b). Similarly, HF and LF were not associated with HR in all analyses (total: n = 262 subjects, WMD = 0.00 bpm, 95% CI: -2.00 to 1.99 bpm, I² = 0%; LF: n = 40 subjects, WMD = -0.16 bpm, 95% CI: -8.75 to 8.44 bpm, I² = 0%; HF: n = 222 subjects, WMD = 0.01 bpm, 95% CI: -2.04 to 2.06 bpm, I² = 0%) (Figure 2c).

	1	TENS			ontrole			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
ow Frequency									
Sherry (2001)	-0.2	1.27	20	-0.2	1.27	20	26.8%	0.00 [-0.79, 0.79]	
Subtotal (95% CI)			20			20	26.8%	0.00 [-0.79, 0.79]	
Heterogeneity: Not a									
Fest for overall effect	: Z = 0.00	0 (P = 1	.00)						
ligh Frequency									
Cipriano (2014)		1.87	20	6		18		3.00 [1.83, 4.17]	
1iller (2000)		0.83	7		0.95	7		1.00 [0.07, 1.93]	
3herry (2001)		1.27	20		1.27	20			
'ieira (2012a)		1.65	11		1.65	11		-0.30 [-1.68, 1.08]	
ieira (2012b)	-0.4	1.93	11	-0.2	1.93	11		-0.20 [-1.81, 1.41]	
Subtotal (95% CI)			69			67	73.2%	0.71 [0.23, 1.18]	-
Heterogeneity: Chi² = Test for overall effect				002); 1-	= 81%				
estion overall effect	. 2 - 2.9	I (F = t	1.004)						
otal (95% CI)			89			87	100.0%	0.52 [0.11, 0.92]	•
leterogeneity: Chi ² =	23.82	df = 5 (l)		002) · 12	- 79%				
est for overall effect	•			002), 1	- 7370				-4 -2 0 2 4
est for subaroup dif		•		df = 1 (P = 0 1	3) I ^z =	55,9%		Favorece [Controle] Favorece [TENS]
correct outware up un			a. 41.	a 1 (55.570		
3) Peripheral V	ascula	ar Re	sista	nce					
			515101						
Study or Subaroup		FENS	Total		ontrole	Tetal	Moight	Mean Difference	Mean Difference
Study or Subgroup	Mean	50	Total	mean	50	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Low Frequency Sherry (2001)	1.5	20.16	20	27	30.26	20	21.2%	-1.20 [-17.14, 14.74]	_
Subtotal (95% CI)	1.5	20.10	20	2.1	30.20	20	21.2%	-1.20 [-17.14, 14.74]	•
Heterogeneity: Not ap	nnlicable								T
Test for overall effect:			88)						
			,						
High Frequency									
Miller (2000)	-13.7	2.25	7	-12.4	3.19	7	31.4%	-1.30 [-4.19, 1.59]	+
Vieira (2012a)	1	11.93	11	30	19.3	11	23.5%	-29.00 [-42.41, -15.59]	
Vieira (2012b)	5	11.93	11	16	18.72	11	23.8%	-11.00 [-24.12, 2.12]	-
Subtotal (95% CI)			29			29	78.8%	-12.85 [-29.45, 3.75]	•
Heterogeneity: Tau ² =	: 186.03;	Chi ^z =	17.20, (f = 2 (P)	= 0.000	DOX: 17 -	0000		
					- 0.000	02), I ⁻ =	88%		
Test for overall effect:	Z=1.52	(P = 0.	13)		- 0.000	UZ), I [−] =	88%		
	Z=1.52	(P = 0.			- 0.000			-10.11 [-22.79. 2.57]	
Total (95% CI)			49			49	100.0%	-10.11 [-22.79, 2.57]	•
Total (95% CI) Heterogeneity: Tau ² =	: 131.02;	Chi ^z =	49 17.24, 0			49	100.0%	-10.11 [-22.79, 2.57]	-100 -50 0 50 100
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect:	= 131.02; Z = 1.56	Chi ² = (P = 0.	49 17.24, (12)	3f= 3 (P	= 0.00	49 06); I² =	100.0% 83%	-10.11 [-22.79, 2.57]	-100 -50 0 50 100 Favorece [TENS] Favorece [Controle]
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect:	= 131.02; Z = 1.56	Chi ² = (P = 0.	49 17.24, (12)	3f= 3 (P	= 0.00	49 06); I² =	100.0% 83%	-10.11 [-22.79, 2.57]	
Total (95% CI) Heterogeneity: Tau² = Test for overall effect: Test for subαroup diff	= 131.02; Z = 1.56 ferences:	Chi ² = (P = 0. Chi ² =	49 17.24, (12)	df= 3 (P f= 1 (P :	= 0.001 = 0.32).	49 06); I² =	100.0% 83%		Favorece [TENS] Favorece [Controle]
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subdroup diff C) Heart Rate	: 131.02; Z = 1.56 ferences: T	Chi ² = (P = 0. : Chi ² =	49 17.24, (12) 0.98. d	df= 3 (P f= 1 (P : Co	= 0.000 = 0.32). ontrole	49 06); I ² = I ² = 0%	100.0 % 83%	Mean Difference	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subdroup diff C) Heart Rate Study or Subgroup	= 131.02; Z = 1.56 ferences:	Chi ² = (P = 0. : Chi ² =	49 17.24, (12)	df= 3 (P f= 1 (P : Co	= 0.000 = 0.32). ontrole	49 06); I ² = I ² = 0%	100.0 % 83%		Favorece [TENS] Favorece [Controle]
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diff C) Heart Rate Study or Subgroup Low Frequency	= 131.02; Z = 1.56 ferences: T Mean	Chi ² = (P = 0. Chi ² = TENS SD	49 17.24, (12) 0.98. d Total	f=3 (P f=1 (P Co <u>Mean</u>	= 0.000 = 0.32). ontrole SD	49 D6); I ² = I ² = 0% <u>Total</u>	100.0% 83% Weight	Mean Difference IV, Random, 95% Cl	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diff C) Heart Rate Study or Subgroup -ow Frequency Hughes (1984)	= 131.02; Z = 1.56 ferences: T Mean -0.3	Chi ² = (P = 0. Chi ² = TENS SD 16.93	49 17.24, (12) 0.98. d <u>Total</u> 12	f=3 (P f=1 (P <u>Co</u> <u>Mean</u> 0	= 0.000 = 0.32). ontrole SD 10.73	49 06); I ² = I ² = 0% <u>Total</u> 10	100.0% 83% Weight 3.1%	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diff C) Heart Rate Study or Subgroup -ow Frequency Hughes (1984) Sartori (2018)	= 131.02; Z = 1.56 ferences: T Mean	Chi ² = (P = 0. Chi ² = TENS SD 16.93	49 17.24, (12) 0.98. d Total	f=3 (P f=1 (P Co <u>Mean</u>	= 0.000 = 0.32). ontrole SD 10.73	49 D6); I ² = I ² = 0% <u>Total</u>	100.0% 83% Weight	Mean Difference IV, Random, 95% Cl	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup Low Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI)	= 131.02; Z = 1.56 ferences: Mean -0.3 -2.37	Chi ² = (P = 0. Chi ² = FENS SD 16.93 12.19	49 17.24, (12) 0.98. d <u>Total</u> 12 8 20	f = 3 (P f = 1 (P <u>Co</u> <u>Mean</u> 0 -2.38	= 0.00) = 0.32). ontrole SD 10.73 15.34	49 06); ² = ² = 0% <u>Total</u> 10 10 20	100.0% 83% Weight 3.1% 2.6%	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate tudy or Subgroup -ow Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² =	= 131.02; Z = 1.56 ferences: T Mean -0.3 -2.37 0.00; Ch	Chi ² = (P = 0. Chi ² = TENS SD 16.93 12.19 hi ² = 0.0	49 17.24, d 12) 0.98. d <u>Total</u> 12 8 20 0, df=	f = 3 (P f = 1 (P <u>Co</u> <u>Mean</u> 0 -2.38	= 0.00) = 0.32). ontrole SD 10.73 15.34	49 06); ² = ² = 0% <u>Total</u> 10 10 20	100.0% 83% Weight 3.1% 2.6%	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate tudy or Subgroup -ow Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² =	= 131.02; Z = 1.56 ferences: T Mean -0.3 -2.37 0.00; Ch	Chi ² = (P = 0. Chi ² = TENS SD 16.93 12.19 hi ² = 0.0	49 17.24, d 12) 0.98. d <u>Total</u> 12 8 20 0, df=	f = 3 (P f = 1 (P <u>Co</u> <u>Mean</u> 0 -2.38	= 0.00) = 0.32). ontrole SD 10.73 15.34	49 06); ² = ² = 0% <u>Total</u> 10 10 20	100.0% 83% Weight 3.1% 2.6%	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup Low Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency	= 131.02; Z = 1.56 ferences: T Mean -0.3 -2.37 0.00; Ch	Chi ² = (P = 0. Chi ² = TENS SD 16.93 12.19 hi ² = 0.0	49 17.24, d 12) 0.98. d <u>Total</u> 12 8 20 0, df=	af = 3 (P f = 1 (P <u>Mean</u> 0 -2.38 1 (P = 0	= 0.000 = 0.32). ontrole SD 10.73 15.34 .97); I [#] =	49 06); ² = ² = 0% <u>Total</u> 10 10 20	100.0% 83% Weight 3.1% 2.6%	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup Low Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency Chu (2012)	= 131.02; Z = 1.56 ferences: -0.3 -2.37 0.00; Ch Z = 0.04 -5.2	Chi ² = $(P = 0.1)^{12}$ (P = 0.1) Chi ² = SD 16.93 12.19 hi ² = 0.0 (P = 0.1) 3	49 17.24, d 12) 0.98. d <u>Total</u> 12 8 20 0, df = 97) 15	af = 3 (P f = 1 (P <u>Mean</u> -2.38 1 (P = 0	= 0.000 = 0.32). ontrole SD 10.73 15.34 .97); * = 4.32	49 06); ² = ² = 0% <u>Total</u> 10 20 = 0%	100.0% 83% Weight 3.1% 2.6% 5.7%	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44] 1.80 [-0.86, 4.46]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup Low Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency Chu (2012) Hollman (1997)	= 131.02; Z = 1.56 ferences: -0.3 -2.37 0.00; Ch Z = 0.04 -5.2 -7	$Chi^{2} = 0.000 (P = 0.0000)$ $(Chi^{2} = 0.0000)$ 16.933 12.19 $hi^{2} = 0.0000 (P = 0.0000)$ (P = 0.0000) 3315.62000	49 17.24, (12) 0.98, d <u>Total</u> 12 8 20 0, df = 37) 15 16	df = 3 (P f = 1 (P = <u>Mean</u> -2.38 1 (P = 0 -7 -5	= 0.000 = 0.32). ontrole SD 10.73 15.34 .97); I ² = 4.32 17.46	49 06); ² = 0% <u>Total</u> 10 10 20 = 0% 15 16	100.0% 83% Weight 3.1% 2.6% 5.7% 59.4% 3.2%	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44] 1.80 [-0.86, 4.46] -2.00 [-13.48, 9.48]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup Low Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency Shu (2012) Hollman (1997) Hughes (1984)	= 131.02; Z = 1.56 ferences: -0.3 -2.37 0.00; Ch Z = 0.04 -5.2 -7 -6.6	$Chi^{2} = 0.0$ $(P = 0.7)^{2} = 0.0$ $IChi^{2} = 0.0$ $IChi^{$	49 17.24, (12) 0.98, d <u>Total</u> 12 8 20 0, df = 37) 15 16 9	df = 3 (P f = 1 (P = 0 -2.38 1 (P = 0 -7 -5 0	= 0.000 = 0.32). ontrole SD 10.73 15.34 .97); * = 4.32 17.46 10.73	49 06); ² = 0% <u>Total</u> 10 10 20 = 0% 15 16 10	100.0% 83% Weight 3.1% 2.6% 5.7% 59.4% 3.2% 7.0%	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44] 1.80 [-0.86, 4.46] -2.00 [-13.48, 9.48] -6.60 [-14.34, 1.14]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup Low Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency Chu (2012) Hollman (1997) Hughes (1984) Jessurun (1998)	= 131.02; Z = 1.56 ferences: 0.03 -0.3 -2.37 0.000; Ch Z = 0.04 -5.2 -7 -6.6 0	$Chi^{2} = 0.000 (P = 0.0000)$ (P = 0.0000) (P = 0.0000) 16.933 12.19 16.933 12.19 16.933 12.19 16.933 12.19 16.933 12.19 16.933 12.19 16.933 12.19 16.933 12.19 16.933 12.19 16.933 12.19 16.933 12.19 17.19 1	49 17.24, (12) 0.98. d 12 8 20 0, df = 37) 15 16 9 10	df = 3 (P f = 1 (P <u>Mean</u> 0 -2.38 1 (P = 0 -7 -5 0 -2	= 0.001 = 0.32). ontrole SD 10.73 15.34 .97); * = 4.32 17.46 10.73 17.69	49 06); ² = 0% <u>Total</u> 10 10 20 = 0% 15 16 10 5	100.0% 83% 5 	Mean Difference IV, Random, 95% CI -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44] 1.80 [-0.86, 4.46] -2.00 [-13.48, 9.48] -6.60 [-14.34, 1.14] 2.00 [-18.05, 22.05]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup Low Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency Chu (2012) Hollman (1997) Hughes (1984) Hessurun (1998) Miller (2000)	= 131.02; Z = 1.56 ferences:	$Chi^{2} = 0.0$ (P = 0.0) $Chi^{2} = 0.0$ 16.93 12.19 $hi^{2} = 0.0$ (P = 0.0) (P = 0.0) 3 15.62 6.07 20.52 11.2	49 17.24, (12) 0.98, d 12 8 20 0, df = 37) 15 16 9 10 7	df = 3 (P f = 1 (P <u>Mean</u> 0 -2.38 1 (P = 0 -7 -5 0 -2 3	= 0.001 = 0.32). ontrole SD 10.73 15.34 .97); [*: 4.32 17.46 10.73 17.69 11.2	49 06); ² = 0% <u>Total</u> 10 10 20 = 0% 15 16 10 5 7	100.0% 83% 0 3.1% 2.6% 5.7% 59.4% 3.2% 7.0% 1.0% 3.1%	Mean Difference IV, Random, 95% CI -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44] 1.80 [-0.86, 4.46] -2.00 [-13.48, 9.48] -6.60 [-14.34, 1.14] 2.00 [-18.05, 22.05] -1.00 [-12.73, 10.73]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup -ow Frequency Hughes (1984) Sattori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency Chu (2012) Hollman (1997) Hughes (1984) Hessurun (1998) Miller (2000) Sattori (2018)	= 131.02; Z = 1.56 ferences: -0.3 -0.3 -2.37 0.00; Ch Z = 0.04 -5.2 -7 -6.6 0 2 -2.08	$Chi^{2} = 0.0$ (P = 0.0) $Chi^{2} = 0.0$ 16.93 12.19 $hi^{2} = 0.0$ (P = 0.0) (P = 0.0) 15.62 6.07 20.52 11.2 13.03	49 17.24, (12) 0.98. d 12 8 20 0, df = 37) 15 16 9 10 7 10	df = 3 (P f = 1 (P <u>Mean</u> 0 -2.38 1 (P = 0 -7 -5 0 -2 3 -2.38	= 0.000 = 0.32). ontrole SD 10.73 15.34 .97); * = 4.32 17.46 10.73 17.69 11.2 15.34	49 06); ² = 0% <u>Total</u> 10 10 20 = 0% 15 16 10 5 7 10	100.0% 83% 5 3.1% 2.6% 5.7% 59.4% 3.2% 7.0% 1.0% 3.1% 2.7%	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44] 1.80 [-0.86, 4.46] -2.00 [-13.48, 9.48] -6.60 [-14.34, 1.14] 2.00 [-18.05, 22.05] -1.00 [-12.73, 10.73] 0.30 [-12.17, 12.77]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup -ow Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency Chu (2012) Hollman (1997) Hughes (1984) lessurun (1998) Miller (2000) Sartori (2018) Silva (2015a)	= 131.02; Z = 1.56 ferences: -0.3 -2.37 0.00; Ch Z = 0.04 -5.2 -7 -6.6 0 2 -2.08 -3	$Chi^{2} = 0.0$ (P = 0.0) $Chi^{2} = 0.0$ 16.93 12.19 $hi^{2} = 0.0$ (P = 0.0) (P = 0.0) 15.62 6.07 20.52 11.2 13.03 8.6	49 17.24, (12) 0.98, d 12 12 8 20 0, df = 97) 15 16 9 10 7 10 12	af = 3 (P f = 1 (P <u>Mean</u> -2.38 1 (P = 0 -7 -5 0 -2 3 -2.38 0	= 0.000 = 0.32). ontrole SD 10.73 15.34 .97); * = 4.32 17.46 10.73 17.69 11.2 15.34 11.91	49 06); ² = 0% 1 ² = 0% 10 10 20 = 0% 15 16 10 5 7 10 12	100.0% 83% 3% 3.1% 2.6% 5.7% 59.4% 3.2% 7.0% 1.0% 3.1% 2.7% 6.1%	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44] 1.80 [-0.86, 4.46] -2.00 [-13.48, 9.48] -6.60 [-14.34, 1.14] 2.00 [-18.05, 22.05] -1.00 [-12.73, 10.73] 0.30 [-12.17, 12.77] -3.00 [-11.31, 5.31]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup -ow Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency Chu (2012) Hollman (1997) Hughes (1984) lessurun (1997) Hughes (1984) lessurun (1998) Miller (2000) Sartori (2018) Silva (2015a)	-0.3 -0.3 -2.37 0.00; Ch Z = 0.04 -5.2 -7 -6.6 0 2 -2.08 -3 -6	$Chi^{2} = 0.000 (P = 0.0000)$ $Chi^{2} = 0.0000 (P = 0.0000)$ 16.933 12.19 16.933 12.19 16.933 12.19 16.933 16.933 16.933 16.933 16.933 16.933 16.933 16.933 16.933 16.933 16.933 16.933 12.19 16.933 12.19 16.933 12.19 17.19	49 17.24, (12) 0.98, d 12 12 8 20 0, df = 97) 15 16 9 10 7 10 12 12 12	df = 3 (P f = 1 (P = 0 -2.38 1 (P = 0 -7 -5 0 -2 3 -2.38 0 -2.38	= 0.000 = 0.32). ontrole SD 10.73 15.34 .97); ² = 4.32 17.46 10.73 17.69 11.2 15.34 11.91 13.95	49 06); ² = 0% Total 10 10 20 = 0% 15 16 10 5 7 10 12 12 12	100.0% 83% Weight 3.1% 2.6% 5.7% 5.7% 5.9.4% 3.2% 7.0% 1.0% 3.1% 2.7% 6.1% 4.4%	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44] 1.80 [-0.86, 4.46] -2.00 [-13.48, 9.48] -6.60 [-14.34, 1.14] 2.00 [-18.75, 22.05] -1.00 [-12.73, 10.73] 0.30 [-12.17, 12.77] -3.00 [-11.31, 5.31] -4.00 [-13.73, 5.73]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup Low Frequency Hughes (1984) Satori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency Chu (2012) Hollman (1997) Hughes (1984) Jessurun (1998) Miller (2000) Sartori (2018) Silva (2015a) Silva (2015b) /ieira (2012a)	= 131.02; Z = 1.56 ferences: -0.3 -2.37 0.00; Ch Z = 0.04 -5.2 -7 -6.6 0 2 -2.08 -3 -6 1.9	$Chi^{2} = 0.0$ (P = 0.1) (P = 0.1) I6.93 12.19 $Ii^{2} = 0.00$ (P = 0.9) I5.62 6.07 20.52 11.2 13.03 8.66 10.05 17.75	49 17.24, (12) 0.98, d 12 8 20 0, df = 37) 15 16 9 10 7 10 7 10 12 212	df = 3 (P f = 1 (P = 0 -2.38 1 (P = 0 -7 -5 0 -2 3 -2.38 0 -2 5.4	= 0.000 = 0.32). ontrole SD 10.73 15.34 .97); * = 4.32 17.46 10.73 17.69 11.2 15.34 11.91 13.95 17.61	49 06); ² = 0% Total 10 10 20 = 0% 15 16 10 5 7 10 12 12 12 11	100.0% 83% Veight 3.1% 2.6% 5.7% 59.4% 3.2% 7.0% 1.0% 3.1% 2.7% 6.1% 6.1% 6.1%	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44] 1.80 [-0.86, 4.46] -2.00 [-13.48, 9.48] -6.60 [-14.34, 1.14] 2.00 [-18.05, 22.05] -1.00 [-12.73, 10.73] 0.30 [-12.77, 12.77] -3.00 [-11.31, 5.31] -4.00 [-13.73, 5.73] -3.50 [-18.28, 11.28]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup Low Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency Chu (2012) Hollman (1997) Hughes (1984) Jessurun (1998) Miller (2000) Sartori (2018) Silva (2015b) Aieira (2012a) Aieira (2012b)	= 131.02; Z = 1.56 ferences: -0.3 -2.37 0.00; Ch Z = 0.04 -5.2 -7 -6.6 0 2 -2.08 -3 -6 1.9	$Chi^{2} = 0.000 (P = 0.0000)$ $Chi^{2} = 0.0000 (P = 0.0000)$ 16.933 12.19 16.933 12.19 16.933 12.19 16.933 16.933 16.933 16.933 16.933 16.933 16.933 16.933 16.933 16.933 16.933 16.933 12.19 16.933 12.19 16.933 12.19 17.19	49 17.24, (12) 0.98, d 12 12 8 20 0, df = 97) 15 16 9 10 7 10 12 12 12	df = 3 (P f = 1 (P = 0 -2.38 1 (P = 0 -7 -5 0 -2 3 -2.38 0 -2.38	= 0.000 = 0.32). ontrole SD 10.73 15.34 .97); ² = 4.32 17.46 10.73 17.69 11.2 15.34 11.91 13.95	49 06); ² = 0% Total 10 10 20 = 0% 15 16 10 5 7 10 12 12 12	100.0% 83% Weight 3.1% 2.6% 5.7% 5.7% 5.9.4% 3.2% 7.0% 1.0% 3.1% 2.7% 6.1% 4.4%	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44] 1.80 [-0.86, 4.46] -2.00 [-13.48, 9.48] -6.60 [-14.34, 1.14] 2.00 [-18.05, 22.05] -1.00 [-12.73, 10.73] 0.30 [-12.17, 12.77] -3.00 [-11.31, 5.73] -4.00 [-13.73, 5.73] -3.50 [-18.28, 11.28] 1.00 [-7.76, 9.76]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup Low Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency Chu (2012) Hollman (1997) Hughes (1984) lessurun (1998) Miller (2000) Sartori (2018) Silva (2015b) Vieira (2012a) Vieira (2012b) Subtotal (95% CI)	= 131.02; Z = 1.56 ferences:	$Chi^{2} = 0.0$ (P = 0.0) $Chi^{2} = 0.0$ 16.93 12.19 $ni^{2} = 0.0$ (P = 0.0) $ni^{2} = 0.0$ (P = 0.0) 15.62 6.07 20.52 11.2 13.03 8.6 10.05 10.98	49 17.24, (12) 0.98, d 12 8 20 0, df = 37) 15 16 9 10 7 10 12 11 11 11 113	df = 3 (P f = 1 (P = 0 -2.38 1 (P = 0 -7 -5 0 -2 3 -2.38 0 -2 3 -2.38 0 -2 3 -2.38 0 -2 3 -2.38	= 0.000 = 0.32). ontrole SD 10.73 15.34 .97); *: 4.32 17.46 10.73 17.69 11.2 15.34 11.91 13.95 17.61 9.96	49 06); ² = 0% Total 10 10 20 = 0% 15 16 10 5 7 10 12 12 12 11 11 109	100.0% 83% 5 7 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44] 1.80 [-0.86, 4.46] -2.00 [-13.48, 9.48] -6.60 [-14.34, 1.14] 2.00 [-18.05, 22.05] -1.00 [-12.73, 10.73] 0.30 [-12.77, 12.77] -3.00 [-11.31, 5.31] -4.00 [-13.73, 5.73] -3.50 [-18.28, 11.28]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup Low Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency Chu (2012) Hollman (1997) Hughes (1984) Hessurun (1998) Miller (2000) Sartori (2018) Silva (2015a) Silva (2015a) Silva (2015a) Silva (2015a) Silva (2015a) Silva (2015a) Silva (2015a) Silva (2015b) Silva (2015b) Subtotal (95% CI) Heterogeneity: Tau ² =	= 131.02; Z = 1.56 ferences:	$Chi^{2} = 0.0$ (P = 0.0) (P = 0.0) 16.93 12.19 $1i^{2} = 0.0$ (P = 0.0) (P = 0.0) 15.62 6.07 20.52 11.2 13.03 8.6 10.05 17.75 10.98 $ni^{2} = 6.1$	49 17.24, (12) 0.98, d 12 8 20 0, df = 37) 15 16 9 10 7 10 12 12 10 7 10 12 11 11 113 2, df =	df = 3 (P f = 1 (P = 0 -2.38 1 (P = 0 -7 -5 0 -2 3 -2.38 0 -2 3 -2.38 0 -2 3 -2.38 0 -2 3 -2.38	= 0.000 = 0.32). ontrole SD 10.73 15.34 .97); *: 4.32 17.46 10.73 17.69 11.2 15.34 11.91 13.95 17.61 9.96	49 06); ² = 0% Total 10 10 20 = 0% 15 16 10 5 7 10 12 12 12 11 11 109	100.0% 83% 5 7 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44] 1.80 [-0.86, 4.46] -2.00 [-13.48, 9.48] -6.60 [-14.34, 1.14] 2.00 [-18.05, 22.05] -1.00 [-12.73, 10.73] 0.30 [-12.17, 12.77] -3.00 [-11.31, 5.73] -4.00 [-13.73, 5.73] -3.50 [-18.28, 11.28] 1.00 [-7.76, 9.76]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup Low Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency Chu (2012) Hollman (1997) Hughes (1984) lessurun (1998) Miller (2000) Sartori (2018) Silva (2015b) Vieira (2012a) Vieira (2012b) Subtotal (95% CI)	= 131.02; Z = 1.56 ferences:	$Chi^{2} = 0.0$ (P = 0.0) (P = 0.0) 16.93 12.19 $1i^{2} = 0.0$ (P = 0.0) (P = 0.0) 15.62 6.07 20.52 11.2 13.03 8.6 10.05 17.75 10.98 $ni^{2} = 6.1$	49 17.24, (12) 0.98, d 12 8 20 0, df = 37) 15 16 9 10 7 10 12 12 10 7 10 12 11 11 113 2, df =	df = 3 (P f = 1 (P = 0 -2.38 1 (P = 0 -7 -5 0 -2 3 -2.38 0 -2 3 -2.38 0 -2 3 -2.38 0 -2 3 -2.38	= 0.000 = 0.32). ontrole SD 10.73 15.34 .97); *: 4.32 17.46 10.73 17.69 11.2 15.34 11.91 13.95 17.61 9.96	49 06); ² = 0% Total 10 10 20 = 0% 15 16 10 5 7 10 12 12 12 11 11 109	100.0% 83% 5 7 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44] 1.80 [-0.86, 4.46] -2.00 [-13.48, 9.48] -6.60 [-14.34, 1.14] 2.00 [-18.05, 22.05] -1.00 [-12.73, 10.73] 0.30 [-12.17, 12.77] -3.00 [-11.31, 5.73] -4.00 [-13.73, 5.73] -3.50 [-18.28, 11.28] 1.00 [-7.76, 9.76]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup Low Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency Chu (2012) Hollman (1997) Hughes (1984) Hessurun (1998) Miller (2000) Sartori (2018) Silva (2015a) Silva (2015a) Silva (2015a) Silva (2015a) Silva (2015a) Silva (2015a) Silva (2015a) Silva (2015b) Silva (2015b) Subtotal (95% CI) Heterogeneity: Tau ² =	= 131.02; Z = 1.56 ferences:	$Chi^{2} = 0.0$ (P = 0.0) (P = 0.0) 16.93 12.19 $1i^{2} = 0.0$ (P = 0.0) (P = 0.0) 15.62 6.07 20.52 11.2 13.03 8.6 10.05 17.75 10.98 $ni^{2} = 6.1$	49 17.24, (12) 0.98, d 12 8 20 0, df = 37) 15 16 9 10 7 10 12 12 10 7 10 12 11 11 113 2, df =	df = 3 (P f = 1 (P = 0 -2.38 1 (P = 0 -7 -5 0 -2 3 -2.38 0 -2 3 -2.38 0 -2 3 -2.38 0 -2 3 -2.38	= 0.000 = 0.32). ontrole SD 10.73 15.34 .97); *: 4.32 17.46 10.73 17.69 11.2 15.34 11.91 13.95 17.61 9.96	49 06); ² = 0% Total 10 10 20 = 0% 15 16 10 5 7 10 12 12 12 11 119 = 0%	100.0% 83% 5 7 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44] 1.80 [-0.86, 4.46] -2.00 [-13.48, 9.48] -6.60 [-14.34, 1.14] 2.00 [-18.05, 22.05] -1.00 [-12.73, 10.73] 0.30 [-12.17, 12.77] -3.00 [-11.31, 5.73] -4.00 [-13.73, 5.73] -3.50 [-18.28, 11.28] 1.00 [-7.76, 9.76]	Favorece (TENS) Favorece (Controle) Mean Difference
Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff C) Heart Rate Study or Subgroup -ow Frequency Hughes (1984) Sartori (2018) Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: High Frequency Chu (2012) Hollman (1997) Hughes (1984) essurun (1998) Hiller (2000) Sartori (2018) Silva (2015a) Silva (2015b) Heterogeneity: Tau ² = Test for overall effect:	-0.3 -0.3 -2.37 0.00; Ch Z = 0.04 -5.2 -7 -6.6 0 2 -2.08 -3 -6 1.9 4.7	$Chi^{2} = 0.0 (P = 0.0) $	49 17.24, (12) 0.98, d 12 8 20 0, df = 97) 15 16 9 10 12 12 11 11 2, df = 37) 133	df = 3 (P f = 1 (P = 0 -2.38 1 (P = 0 -7 -5 0 -2 3 -2.38 0 -2 5.4 3.7 9 (P = 0	= 0.000 = 0.32). ontrole SD 10.73 15.34 .97); ² = 4.32 17.46 10.73 17.69 11.2 15.34 11.91 13.95 17.61 9.96 .73); ² =	49 06); ² = 0% Total 10 10 20 = 0% 15 16 10 5 7 10 12 12 11 10 9 = 0% 122 12 11 10 12 12 12 11 10 10 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 5 7 10 10 20 20 12 12 11 11 20 5 7 10 12 21 21 21 21 21 21 21 21 21	100.0% 83% 3.1% 2.6% 5.7% 59.4% 3.2% 7.0% 1.0% 3.1% 2.7% 6.1% 4.4% 1.9% 5.5% 94.3%	Mean Difference IV, Random, 95% Cl -0.30 [-11.96, 11.36] 0.01 [-12.71, 12.73] -0.16 [-8.75, 8.44] 1.80 [-0.86, 4.46] -2.00 [-13.48, 9.48] -6.60 [-14.34, 1.14] 2.00 [-18.05, 22.05] -1.00 [-12.73, 10.73] 0.30 [-12.17, 12.77] -3.00 [-11.31, 5.31] -4.00 [-13.73, 5.73] -3.50 [-18.28, 11.28] 1.00 [-7.76, 9.76] 0.18 [-1.93, 2.29]	Favorece (TENS) Favorece (Controle) Mean Difference

Figure 2. Forest plot comparing effects of low-frequency and high-frequency TENS on blood flow (A), peripheral vascular resistance (B), and heart rate (C). [Blood flow; Control; Low Frequency; High Frequency; Peripheral vascular resistance; Heart rate; Favors TENS; Favors Control].

Arterial pressure results

Mean blood pressure


The analysis of mean blood pressure (MBP) included only studies that used high-frequency $TENS^{(5, 7, 10, 15)}$, of which one compared young and older $adults^{(15)}$. The analysis showed a significant reduction in MBP when high-frequency TENS was used (04 studies, n=142 subjects, WMD = -9.45 mmHg, 95% CI: -15.64 to -3.26 mmHg, I² = 38%) (Figure 3a).

Systolic blood pressure

Four studies investigated the effect of low-frequency TENS on systolic blood pressure (SBP)^(3, 4, 6, 11) and eight studies investigated the effect of high-frequency TENS^(3-5, 9, 11, 12, 14), two of which compared young and older adults^(14, 15). Overall analysis showed inconclusive results (12 studies, n = 499 subjects, WMD = -1.01 mmHg, 95% CI: -4.79 to 2.78 mmHg, I² = 98%). In subgroup analysis, LF TENS showed a reduction in SBP (n = 170 subjects, WMD = -3.39 mmHg, 95% CI: -4.98 to -1.79 mmHg, I² = 9%). However, the HF TENS was inconclusive (n = 329 subjects, WMD = -0.19 mmHg, 95% CI: -3.77 to 3.40 mmHg, I² = 67%) (Figure 3b).

Diastolic blood pressure

Three studies analyzed the effect of low-frequency TENS on diastolic blood pressure (DBP)^(4, 6, 11) and seven studies analyzed the effect of high-frequency TENS^(4, 5, 9, 11, 12, 14, 15), two of which compared young and older adults^(14, 15). TENS intake was associated with a decrease in DBP in both the overall and HF TENS analyses (overall: n = 319 subjects, WMD = -2.81 mmHg, 95% CI: -4.44 to -1.18 mmHg, I² = 0%; HF: n = 239 subjects, WMD = -2.85 mmHg, 95% CI: -4.66 to -1.03 mmHg, I² = 0%). However, the results of the low-frequency TENS were inconclusive (n = 80 subjects, WMD = -2.66 mmHg, 95% CI: -6.38 to 1.07 mmHg, I2 = 0%) (Figure 3c).

Figure 3. Forest plot comparing effects of low-frequency and high-frequency TENS on mean blood pressure (A), systolic blood pressure (B), and diastolic blood pressure (C). [Mean blood pressure; Control; Low Frequency; High Frequency; Systolic blood pressure; Diastolic blood pressure; Favors TENS; Favors Control].

Motor or sensory excitability threshold

Blood flow

Two studies analyzed blood flow using TENS at the motor excitability threshold^(7, 8) and two studies used TENS at the sensory threshold^(10, 15), one of which compared young and older adults⁽¹⁵⁾. In the overall analysis, a significant increase in blood flow was found (n = 136 individuals, WMD = 0.79 ml/min, 95% CI: 0.29 to 1.29 ml/min, I² = 80%). In the subgroup analysis, the effect of the motor excitability threshold was inconclusive (02 studies, n = 54 individuals, WMD = 0.42 ml/min, 95% CI: -0.19 to 1.02 ml/min, I² = 61%). In contrast, blood flow increased when the sensory threshold was used (n = 82 individuals, WMD = 1.61 ml/min, 95% CI: 0.72 to 2.50 ml/min, I² = 85%) (Figure 4a).

Peripheral vascular resistance and heart rate

Two studies analyzed peripheral vascular resistance using TENS at the motor excitability threshold^(7, 8) and two studies used TENS at the sensory threshold^(10, 15), one of which compared young and older adults⁽¹⁵⁾. In the overall analysis, there was a significant decrease in peripheral vascular resistance (04 studies, n = 136 individuals, WMD = -4.79 arbitrary units, 95% CI: -7.45 to -2.13 arbitrary units, I² = 93%). In the subgroup analyses, the effect of the motor threshold was inconclusive (02 studies, n = 54 individuals, WMD = -1.30 arbitrary units, 95% CI: -4.14 to 1.55 arbitrary units, I² = 0%) whereas the sensory threshold led to a significant reduction in peripheral vascular resistance (02 studies, n = 82 individuals, WMD = -28.50 arbitrary units, 95% CI: -35.91 to -21.09 arbitrary units, I² = 84%) (Figure 4b).

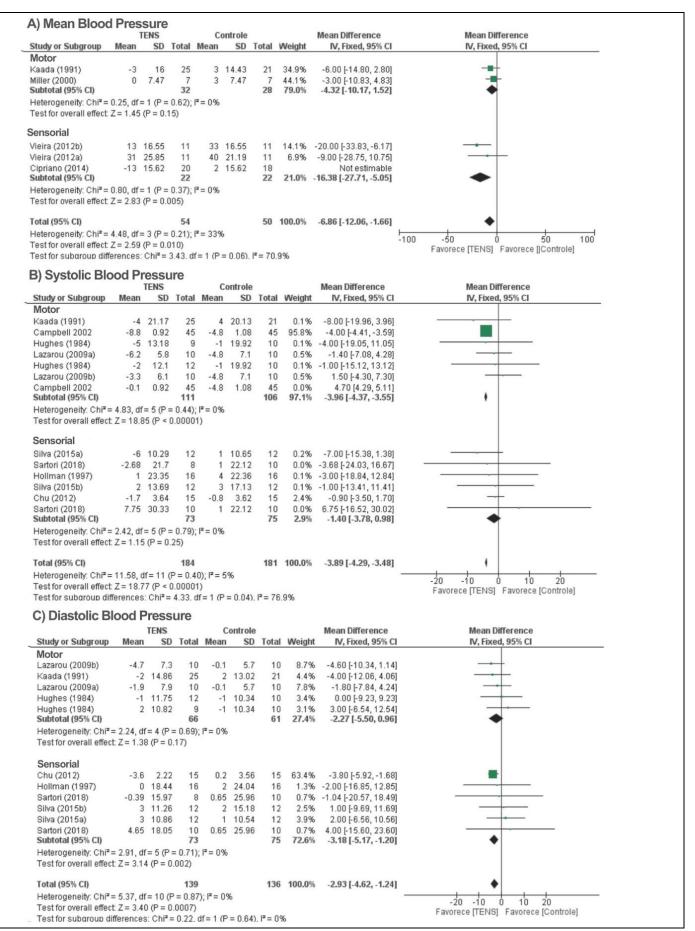
Two studies analyzed heart rate using TENS at the motor excitability threshold^(4, 7), and seven studies used TENS at the sensory threshold 9,11-15, two of which compared young and older adults^(14, 15). The results of both overall and subgroup analysis were inconclusive (Overall: 09 studies, n = 262 individuals, WMD = -0.32 bpm, 95% CI: -2.34 to 1.70 bpm, $I^2 = 0\%$; Motor: 02 studies, n= 55 individuals, WMD = -3.82 bpm, 95% CI: -9.47 to 1.83 bpm, $I^2 = 0\%$; Sensory: 07 studies, n= 207 individuals, WMD = 0.19 bpm, 95% CI: -1.97 to 2.35 bpm, $I^2 = 0\%$) (Figure 4c).

		TENS		C	ontrole			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Motor									
Miller (2000)	6.6	0.83	7	5.6	0.95	7	28.4%	1.00 [0.07, 1.93]	
Sherry (2001)	-0.2	1.27	20	-0.2	1.27	20	40.1%	0.00 [-0.79, 0.79]	-
Subtotal (95% CI)			27			27	68.5%	0.42 [-0.19, 1.02]	*
Heterogeneity: Chi ² =	2.57. df	= 1 (P =	0.11):	$ ^2 = 619$	6				
Test for overall effect									
Sensorial									
Cipriano (2014)	9	1.87	20	6	1.8	18	18.2%	3.00 [1.83, 4.17]	
vieira (2012a)		1.65	11	-0.4					
vieira (2012b)		11.93	11		11.93			-0.20 [-10.17, 9.77]	
Subtotal (95% CI)	-0.4	11.95	42	-0.2	11.85	40	31.5%		
						40	51.5%	1.61 [0.72, 2.50]	-
Heterogeneity: Chi² = Test for overall effect:				2); ² = 8	15%				
Total (95% CI)			69			67	100.0%	0.79 [0.29, 1.29]	•
Heterogeneity: Chi ² =	20.27, d	f= 4 (P	= 0.00	04); I ² =	80%			-	-10 -5 0 5 10
Test for overall effect	Z= 3.11	(P = 0.	002)						
Test for subaroup dif				f=1 (P	= 0.03)	$l^2 = 79$	0%		Favorece [Controle] Favorece [TENS]
					0.007				
B) Peripheral Va			istan		ntrole			Mean Difference	Mean Difference
Stude on Calendary		ENS	Tetal		ntrole	Tetal	Ale indet		
Study or Subgroup	Mean	SD	Total	mean	50	Total	weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
Notor	10-	0.05	-	40.1	0.45	-	04.40	1001110 1000	
diller (2000)	-13.7	2.25		-12.4	3.19	7	84.4%	-1.30 [-4.19, 1.59]	
Sherry (2001)	1.5	20.16	20	2.7	30.26	20	2.8%	-1.20 [-17.14, 14.74]	
Subtotal (95% CI)			27			27	87.2%	-1.30 [-4.14, 1.55]	•
Heterogeneity: Chi ² =	0.00, df=	= 1 (P =	0.99); F	² =0%					
Fest for overall effect:	Z = 0.89	(P = 0.3	(7)						
Sensorial									
Cipriano (2014)	-55	17.2	20	-12	20.51	18	48%	-43.00 [-55.11, -30.89]	
/ieira (2012a)		11.93	11		19.3	11		-29.00 [-42.41, -15.59]	
/ieira (2012b)		11.93	11		18.72	11	4.1%	-11.00 [-24.12, 2.12]	
Subtotal (95% CI)	5	11.85	42	10	10.72	40		-28.50 [-35.91, -21.09]	▲
						40	12.070	-20.50 [-55.91, -21.09]	•
		= 7 (P)	= 0.002); * = 84	%				
Heterogeneity: Chi ² = Fest for overall effect:									
Feterogeneity: Chir = Fest for overall effect:									
-						67	100.0%	-4.79 [-7.45, -2.13]	•
Fest for overall effect: Fotal (95% CI)	Z=7.53	(P < 0.0	69		93%	67	100.0%	-4.79 [-7.45, -2.13]	+
Fest for overall effect: Fotal (95% CI) Heterogeneity: Chi ² =	Z = 7.53 57.43, df	(P < 0.0	69 69<0.000		93%	67	100.0%	-4.79 [-7.45, -2.13]	
Fest for overall effect: Fotal (95% CI)	Z = 7.53 57.43, df Z = 3.53	(P < 0.0 F = 4 (P + 0.0 (P = 0.0	69 69 0.000 004)	01); I²=				-4.79 [-7.45, -2.13]	-100 -50 0 50 100 Favorece [TENS] Favorece [Controle]
Fest for overall effect: Fotal (95% CI) Heterogeneity: Chi ² = Fest for overall effect: Fest for subaroup diff	Z = 7.53 57.43, df Z = 3.53	(P < 0.0 F = 4 (P + 0.0 (P = 0.0	69 69 0.000 004)	01); I²=				-4.79 [-7.45, -2.13]	
Fest for overall effect: Fotal (95% CI) Heterogeneity: Chi ² = Fest for overall effect:	Z = 7.53 57.43, df Z = 3.53 erences:	(P < 0.0 f = 4 (P + (P = 0.0 Chi ² = 4	69 69 0.000 004)	01); I² = df = 1 (P	< 0.000)01), I²:			Favorece [TENS] Favorece [Controle]
Fest for overall effect: fotal (95% Cl) Heterogeneity: Chi ² = Fest for overall effect: Fest for subαroup diff) Heart Rate	Z = 7.53 57.43, df Z = 3.53 erences:	(P < 0.0 (P = 4 (P + (P = 0.0 Chi ² = 4 TENS	69 < 0.000 004) 45.08. d	01); I² = tf = 1 (P C	< 0.000)01), I ^z :	= 97.8%	Mean Difference	Favorece [TENS] Favorece [Controle] Mean Difference
Fest for overall effect: Total (95% CI) Heterogeneitly: Chi ² = Fest for overall effect: Fest for subαroup diff) Heart Rate Study or Subgroup	Z = 7.53 57.43, df Z = 3.53 erences:	(P < 0.0 (P = 4 (P + (P = 0.0 Chi ² = 4 TENS	69 < 0.000 004) 45.08. d	01); I² = df = 1 (P	< 0.000)01), I ^z :		Mean Difference	Favorece [TENS] Favorece [Controle]
Fest for overall effect: Fotal (95% CI) Heterogeneity: Chi ² = Fest for overall effect: Fest for subaroup diff) Heart Rate Study or Subgroup Motor	Z = 7.53 57.43, df Z = 3.53 erences: Mean	(P < 0.0 (P = 4 (P + (P = 0.0 Chi ² = + TENS SD	00001) 69 < 0.000 0004) 45.08. c Total	01); I ^z = ff = 1 (P C <u>Mean</u>	< 0.000 ontrole SD	001). I ² : Total	= 97.8% Weight	Mean Difference IV, Fixed, 95% Cl	Favorece [TENS] Favorece [Controle] Mean Difference
Fest for overall effect: Fotal (95% CI) Heterogeneity: Chi ² = Fest for overall effect: Fest for subaroup diff) Heart Rate Study or Subgroup Motor Hughes (1984)	Z = 7.53 57.43, df Z = 3.53 erences: <u>Mean</u> -6.6	(P < 0.0 T = 4 (P + (P = 0.0 Chi ² = + TENS SD 6.07	00001) 69 < 0.000 004) 45.08. c Total 9	01); I ^z = tf = 1 (P <u>C</u> <u>Mean</u> 0	< 0.000 ontrole SD 10.73	001). I [⊋] ≕ <u>Total</u> 10	= 97.8% <u>Weight</u> 7.2%	Mean Difference IV, Fixed, 95% Cl -6.60 [-14.34, 1.14]	Favorece [TENS] Favorece [Controle] Mean Difference
Fest for overall effect: Total (95% CI) Heterogeneity: Chi ² = Fest for overall effect: Fest for subaroup diff) Heart Rate Study or Subgroup Motor Hughes (1984) Willer (2000)	Z = 7.53 57.43, df Z = 3.53 erences: <u>Mean</u> -6.6 2	(P < 0.0 (P = 0.0 (P = 0.0 Chi ² = 4 TENS SD 6.07 11.2	00001) 69 < 0.000 004) 45.08. c Total 9 7	01); I ² = If = 1 (P <u>C</u> <u>Mean</u> 0 3	< 0.000 ontrole SD 10.73 11.2	001). *: <u>Total</u> 10 7	= 97.8% <u>Weight</u> 7.2% 3.1%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73]	Favorece [TENS] Favorece [Controle] Mean Difference
Fest for overall effect: Total (95% CI) Heterogeneity: Chi ² = Fest for overall effect: Fest for subaroup diff) Heart Rate Study or Subgroup Motor Hughes (1984) Hughes (1984)	Z = 7.53 57.43, df Z = 3.53 erences: <u>Mean</u> -6.6 2	(P < 0.0 T = 4 (P + (P = 0.0 Chi ² = + TENS SD 6.07	00001) 69 0004) 45.08. c Total 9 7 12	01); I ² = If = 1 (P <u>C</u> <u>Mean</u> 0 3	< 0.000 ontrole SD 10.73	001), * = <u>Total</u> 10 7 10	= 97.8% Weight 7.2% 3.1% 3.2%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36]	Favorece [TENS] Favorece [Controle] Mean Difference
Fest for overall effect: Total (95% CI) Heterogeneity: Chi ² = Fest for overall effect: Fest for subaroup diff) Heart Rate Study or Subgroup Motor Hughes (1984) Willer (2000)	Z = 7.53 57.43, df Z = 3.53 erences: <u>Mean</u> -6.6 2	(P < 0.0 (P = 0.0 (P = 0.0 Chi ² = 4 TENS SD 6.07 11.2	00001) 69 < 0.000 004) 45.08. c Total 9 7	01); I ² = If = 1 (P <u>C</u> <u>Mean</u> 0 3	< 0.000 ontrole SD 10.73 11.2	001). *: <u>Total</u> 10 7	= 97.8% <u>Weight</u> 7.2% 3.1%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36]	Favorece [TENS] Favorece [Controle] Mean Difference
Fest for overall effect: Total (95% CI) Heterogeneity: Chi ² = Fest for overall effect: Fest for subaroup diff) Heart Rate Study or Subgroup Motor Hughes (1984) Hughes (1984)	Z = 7.53 57.43, df Z = 3.53 erences: <u>Mean</u> -6.6 2 -0.3	(P < 0.0 (P = 4 (P + (P = 0.0 Chi ² = - TENS SD 6.07 11.2 16.93	00001) 69 < 0.000 004) 45.08. c Total 9 7 12 28	01); I ² = if = 1 (P <u>C</u> <u>Mean</u> 0 3 0	< 0.000 ontrole SD 10.73 11.2	001), * = <u>Total</u> 10 7 10	= 97.8% Weight 7.2% 3.1% 3.2%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36]	Favorece [TENS] Favorece [Controle] Mean Difference
Fest for overall effect: Total (95% CI) Heterogeneity: Chi ² = Fest for subaroup diffi) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI)	Z = 7.53 57.43, df Z = 3.53 erences: <u>Mean</u> -6.6 2 -0.3 1.07, df	(P < 0.0 (P = 0.0 (P = 0.0 Chi ² = - TENS SD 6.07 11.2 16.93 = 2 (P =	00001) 69 < 0.000 004) 45.08. c Total 9 7 12 28 ≈ 0.59);	01); I ² = if = 1 (P <u>C</u> <u>Mean</u> 0 3 0	< 0.000 ontrole SD 10.73 11.2	001), * = <u>Total</u> 10 7 10	= 97.8% Weight 7.2% 3.1% 3.2%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36]	Favorece [TENS] Favorece [Controle] Mean Difference
Fest for overall effect: Total (95% CI) Heterogeneity: Chi ² = Fest for overall effect: Fest for subaroup diff) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneity: Chi ² =	Z = 7.53 57.43, df Z = 3.53 erences: <u>Mean</u> -6.6 2 -0.3 1.07, df	(P < 0.0 (P = 0.0 (P = 0.0 Chi ² = - TENS SD 6.07 11.2 16.93 = 2 (P =	00001) 69 < 0.000 004) 45.08. c Total 9 7 12 28 ≈ 0.59);	01); I ² = if = 1 (P <u>C</u> <u>Mean</u> 0 3 0	< 0.000 ontrole SD 10.73 11.2	001), * = <u>Total</u> 10 7 10	= 97.8% Weight 7.2% 3.1% 3.2%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36]	Favorece [TENS] Favorece [Controle] Mean Difference
Fest for overall effect: Fotal (95% CI) Heterogeneitly: Chi ² = Fest for subaroup diff) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneitly: Chi ² = Fest for overall effect: Sensorial	Z = 7.53 57.43, df Z = 3.53 erences: <u>Mean</u> -6.6 2 -0.3 1.07, df Z = 1.32	(P < 0.0 (P = 0.0 (P = 0.0 Chi ² = 4 TENS SD 6.07 11.2 16.93 = 2 (P = 0.	00001) 69 < 0.000 004) 45.08. c Total 9 7 12 28 ≈ 0.59);	01); I ² = ff = 1 (P <u>C</u> <u>Mean</u> 0 3 0 I ² = 0%	< 0.000 ontrole SD 10.73 11.2 10.73	001), * = Total 10 7 10 27	= 97.8% Weight 7.2% 3.1% 3.2% 13.5%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83]	Favorece [TENS] Favorece [Controle] Mean Difference
Fest for overall effect: Fotal (95% CI) Heterogeneitly: Chi ² = Fest for subaroup diff) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneitly: Chi ² = Fest for overall effect: Sensorial /ieira (2012b)	Z = 7.53 57.43, df Z = 3.53 erences: <u>Mean</u> -6.6 2 -0.3 1.07, df Z = 1.32	(P < 0.0 (P = 0.0 (P = 0.0 Chi ² = 4 TENS SD 6.07 11.2 16.93 = 2 (P = 0. 16.55	00001) 69 0004) 45.08. c Total 9 7 12 28 0.59); 19) 11	01); I ² = ff = 1 (P <u>C</u> <u>Mean</u> 0 3 0 I ² = 0%	< 0.000 ontrole SD 10.73 11.2 10.73	001). * = <u>Total</u> 10 7 10 27 11	= 97.8% Weight 7.2% 3.1% 3.2% 13.5% 2.6%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83] -10.00 [-22.83, 2.83]	Favorece [TENS] Favorece [Controle] Mean Difference
Test for overall effect: Total (95% CI) Heterogeneity: Chi ² = Test for overall effect: Test for subaroup diff) Heart Rate Study or Subgroup Motor Hughes (1984) Hughes (1984) Subtotal (95% CI) Heterogeneity: Chi ² = Test for overall effect: Sensorial /ieira (2012b) /ieira (2012a)	Z = 7.53 57.43, df Z = 3.53 erences: <u>Mean</u> -6.6 2 -0.3 1.07, df Z = 1.32 10 17	(P < 0.0) f = 4 (P - (P = 0.0)) (P = 0.0) Chi ² = 4 TENS <u>SD</u> 6.07 11.2 16.93 = 2 (P = 0.) 16.55 14.04	00001) 69 < 0.000 0004) 45.08. c Total 9 7 12 28 : 0.59); 19) 11 11	01); ² = ff = 1 (P <u>C</u> <u>Mean</u> 0 3 0 ² = 0% 20 21	< 0.000 ontrole SD 10.73 11.2 10.73 14.04 18.72	001). ₹= Total 10 7 10 27 11 11	= 97.8% Weight 7.2% 3.1% 3.2% 13.5% 2.6% 2.3%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83] -10.00 [-22.83, 2.83] -4.00 [-17.83, 9.83]	Favorece [TENS] Favorece [Controle] Mean Difference
Test for overall effect: Total (95% CI) Heterogeneity: Chi ² = Test for overall effect: Test for subaroup diffi) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneity: Chi ² = Test for overall effect: Sensorial Vieira (2012b) Vieira (2012b) Silva (2015b)	Z = 7.53 57.43, df Z = 3.53 erences: <u>Mean</u> -6.6 2 -0.3 1.07, df Z = 1.32 10 17 -6	(P < 0.0) T = 4 (P - (P = 0.0) (P = 0.0) $Chi^2 = -0$ TENS <u>SD</u> 6.07 11.2 16.93 = 2 (P = 0.0) 16.55 14.04 10.05	0001) 69 < 0.000 0004) 45.08.c 7 7 12 28 0.59); 19) 11 11 12	01); I ² = ff = 1 (P <u>C</u> <u>Mean</u> 0 3 0 I ² = 0% 20 21 -2	< 0.000 ontrole SD 10.73 11.2 10.73 14.04 18.72 13.95	001). ₹: <u>Total</u> 10 7 10 27 11 11 11 12	= 97.8% Weight 7.2% 3.1% 3.2% 13.5% 2.6% 2.3% 4.6%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83] -10.00 [-22.83, 2.83] -4.00 [-17.83, 9.83] -4.00 [-13.73, 5.73]	Favorece [TENS] Favorece [Controle] Mean Difference
Test for overall effect: Total (95% CI) Heterogeneity: Chi ² = Test for overall effect: Test for subaroup diff) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneity: Chi ² = Test for overall effect: Sensorial //ieira (2012b) //ieira (2012b) Silva (2015b) Silva (2015a)	Z = 7.53 57.43, df Z = 3.53 erences: Mean -6.6 2 -0.3 1.07, df Z = 1.32 10 17 -6 -3	(P < 0.0) f = 4 (P + (P = 0.0)) (P = 0.0) $Chi^2 = 4$ TENS 5D 6.07 11.2 16.93 = 2 (P = 0.0) 16.55 14.04 10.05 8.6	0001) 69 < 0.000 0004) 45.08.c 7 7 12 28 5 0.59); 19) 11 11 12 12 12	01); I ^z = ff = 1 (P <u>C</u> <u>Mean</u> 0 3 0 1 ^z = 0% 20 21 -2 0	< 0.000 ontrole SD 10.73 11.2 10.73 14.04 18.72 13.95 11.91	001). ₹: Total 10 7 10 27 11 11 11 12 12	= 97.8% Weight 7.2% 3.1% 3.2% 13.5% 2.6% 2.3% 4.6% 6.3%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83] -10.00 [-22.83, 2.83] -4.00 [-17.83, 9.83] -4.00 [-13.73, 5.73] -3.00 [-11.31, 5.31]	Favorece [TENS] Favorece [Controle] Mean Difference
Test for overall effect: Total (95% CI) Heterogeneity: Chi ² = Test for overall effect: Test for subaroup diffi) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneity: Chi ² = Test for overall effect: Sensorial Vieira (2012b) Vieira (2012b) Silva (2015b)	Z = 7.53 57.43, df Z = 3.53 erences: Mean -6.6 2 -0.3 1.07, df Z = 1.32 10 17 -6 -3	(P < 0.0) T = 4 (P - (P = 0.0) (P = 0.0) $Chi^2 = -0$ TENS <u>SD</u> 6.07 11.2 16.93 = 2 (P = 0.0) 16.55 14.04 10.05	0001) 69 < 0.000 0004) 45.08.c 7 7 12 28 0.59); 19) 11 11 12	01); I ^z = ff = 1 (P <u>C</u> <u>Mean</u> 0 3 0 1 ^z = 0% 20 21 -2 0	< 0.000 ontrole SD 10.73 11.2 10.73 14.04 18.72 13.95	001). ₹: <u>Total</u> 10 7 10 27 11 11 11 12	= 97.8% Weight 7.2% 3.1% 3.2% 13.5% 2.6% 2.3% 4.6%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83] -10.00 [-22.83, 2.83] -4.00 [-17.83, 9.83] -4.00 [-13.73, 5.73] -3.00 [-11.31, 5.31]	Favorece [TENS] Favorece [Controle] Mean Difference
Test for overall effect: Total (95% CI) Heterogeneity: Chi ² = Fest for overall effect: Test for subaroup diff) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneity: Chi ² = Test for overall effect: Sensorial //ieira (2012b) //ieira (2012b) Silva (2015b) Silva (2015a)	Z = 7.53 57.43, df Z = 3.53 erences: Mean -6.6 2 -0.3 1.07, df Z = 1.32 10 17 -6 -3 -7	(P < 0.0) f = 4 (P + (P = 0.0)) (P = 0.0) $Chi^2 = 4$ TENS 5D 6.07 11.2 16.93 = 2 (P = 0.0) 16.55 14.04 10.05 8.6	0001) 69 < 0.000 0004) 45.08.c 7 7 12 28 5 0.59); 19) 11 11 12 12 12	01); I ² = ff = 1 (P C Mean 0 3 0 I ² = 0% 20 21 -2 0 -5	< 0.000 ontrole SD 10.73 11.2 10.73 14.04 18.72 13.95 11.91	001). ₹: Total 10 7 10 27 11 11 11 12 12	= 97.8% Weight 7.2% 3.1% 3.2% 13.5% 2.6% 2.3% 4.6% 6.3%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83] -10.00 [-22.83, 2.83] -4.00 [-17.83, 9.83] -4.00 [-13.73, 5.73] -3.00 [-11.31, 5.31] -2.00 [-13.48, 9.48]	Favorece [TENS] Favorece [Controle] Mean Difference
Test for overall effect: Total (95% CI) Heterogeneitly: Chi ² = Fest for overall effect: Test for subaroup diffect) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneitly: Chi ² = Test for overall effect: Sensorial //ieira (2012b) //ieira (2015b) Silva (2015b) Hollman (1997) Sartori (2018)	Z = 7.53 57.43, df Z = 3.53 erences: Mean -6.6 2 -0.3 1.07, df Z = 1.32 10 17 -6 -3 -7 -2.37	(P < 0.0) T = 4 (P - (P = 0.0) (P = 0.0) $Chi^2 = -0$ TENS SD 6.07 11.2 16.93 = 2 (P = 0.0) 16.55 14.04 10.05 8.6 15.62 12.19	0001) 69 < 0.000 004) 45.08.c Total 9 7 12 28 5 0.59); 19) 11 11 12 12 16 8	01); I [#] = ff = 1 (P C Mean 0 3 0 I [#] = 0% 20 21 -5 -2.38	< 0.000 ontrole SD 10.73 11.2 13.95 11.7 13.95 11.7 10.74 11.2 13.95 11.7 10.74 11.7 10.73 11.2 13.95 11.7 10.73 11.7 10.73 11.2 13.95 11.7 10.73 11.7 10.73 11.2 13.95 11.91 1.746 15.34	001). ₹ = Total 10 7 10 27 11 11 11 12 12 16 10	= 97.8% Weight 7.2% 3.1% 3.2% 13.5% 2.6% 2.3% 4.6% 6.3% 3.3% 2.7%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83] -10.00 [-22.83, 2.83] -4.00 [-17.83, 9.83] -4.00 [-17.83, 9.83] -4.00 [-13.73, 5.73] -3.00 [-11.31, 5.31] -2.00 [-13.48, 9.48] 0.01 [-12.71, 12.73]	Favorece [TENS] Favorece [Controle] Mean Difference
Test for overall effect: Total (95% CI) Heterogeneitly: Chi ² = Test for overall effect: Test for subaroup diffect: Test for subaroup diffect: Construction Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneitly: Chi ² = Test for overall effect: Sensorial Vieira (2012b) Vieira (2012a) Silva (2015a) Hollman (1997) Sartori (2018) Satori (2018)	Z = 7.53 57.43, df Z = 3.53 erences: Mean -6.6 2 -0.3 1.07, df Z = 1.32 10 17 -6 -3 -7 -2.37 -2.08	(P < 0.0) T = 4 (P - (P = 0.0) (P = 0.0) $Chi^2 = -0$ TENS SD 6.07 11.2 16.93 = 2 (P = 0.0) 16.55 14.04 10.05 8.6 15.62 12.19 13.03	0001) 69 < 0.000 004) 45.08.c Total 9 7 12 28 6 0.59); 19) 11 11 12 12 12 16 8 10	01); I ² = if = 1 (P C Mean 0 3 0 I ² = 0% 20 21 -2 0 -5 -2.38 -2.38	< 0.000 ontrole SD 10.73 11.2 10.73 11.91 17.46 15.34 15.34	1001). ₹ = Total 10 7 10 27 11 11 12 16 10 10 10 10	= 97.8% Weight 7.2% 3.1% 3.2% 13.5% 2.6% 2.3% 4.6% 6.3% 3.3% 2.7% 2.8%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83] -4.00 [-12.83, 2.83] -4.00 [-13.73, 5.73] -3.00 [-11.31, 5.31] -2.00 [-13.48, 9.48] 0.01 [-12.71, 12.73] 0.30 [-12.17, 12.77]	Favorece [TENS] Favorece [Controle] Mean Difference
Fest for overall effect: Fotal (95% CI) Heterogeneity: Chi ² = Fest for overall effect: Fest for subaroup diff) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneity: Chi ² = Fest for overall effect: Sensorial /ieira (2012b) /ieira (2012b) /ieira (2015b) Bilva (2015b) Bilva (2015b) Hollman (1997) Sartori (2018) Sartori (2018) Chu (2012)	Z = 7.53 57.43, df Z = 3.53 erences: Mean -6.6 2 -0.3 1.07, df Z = 1.32 10 17 -6 -3 -7 -2.37 -2.08 -5.2	(P < 0.0) f = 4 (P - (P = 0.0)) (P = 0.0) $Chi^2 = 0$ TENS SD 6.07 11.2 16.93 = 2 (P = 0) 16.55 14.04 10.05 8.6 15.62 12.19 13.03 3	0001) 69 < 0.000 004) 15.08.c 7 12 28 9 7 12 28 8 7 12 28 11 11 12 12 12 16 8 10 15 11 11 12 12 12 12 12 12 12 12	01); ² = ff = 1 (P C Mean 0 3 0 1 ² = 0% 20 21 -2 0 -5 -2.38 -2.38 -7	< 0.000 ontrole SD 10.73 11.2 13.95 11.74 15.34 15.34 15.34 14.32	1001). *: Total 10 7 10 27 11 11 12 12 16 10 10 10 10 10 15	= 97.8% Weight 7.2% 3.1% 3.2% 13.5% 2.6% 2.3% 4.6% 6.3% 3.3% 2.7% 2.8% 61.0%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83] -4.00 [-17.83, 9.83] -4.00 [-13.73, 5.73] -3.00 [-11.31, 5.31] -2.00 [-13.48, 9.48] 0.01 [-12.71, 12.73] 0.30 [-12.17, 12.77] 1.80 [-0.86, 4.46]	Favorece [TENS] Favorece [Controle] Mean Difference
Test for overall effect: Total (95% CI) Heterogeneity: Chi ² = Fest for overall effect: Test for subaroup diff) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneity: Chi ² = Test for overall effect: Sensorial Vieira (2012b) Vieira (2012b) Silva (2015b) Silva (2015b) Silva (2015b) Silva (2015b) Sartori (2018) Sartori (2018) Chu (2012) Jessurun (1998)	Z = 7.53 57.43, df Z = 3.53 erences: Mean -6.6 2 -0.3 1.07, df Z = 1.32 10 17 -6 -3 -7 -2.37 -2.08 -5.2	(P < 0.0) T = 4 (P - (P = 0.0) (P = 0.0) $Chi^2 = -0$ TENS SD 6.07 11.2 16.93 = 2 (P = 0.0) 16.55 14.04 10.05 8.6 15.62 12.19 13.03	0001) 69 < 0.000 004) 45.08.c 7 7 28 6 0.59); 19) 11 12 12 16 8 10 15 10 15 10	01); ² = ff = 1 (P C Mean 0 3 0 1 ² = 0% 20 21 -2 0 -5 -2.38 -2.38 -7	< 0.000 ontrole SD 10.73 11.2 10.73 11.91 17.46 15.34 15.34	001). ₹: Total 10 7 10 27 11 11 12 12 16 10 10 15 5	= 97.8% Weight 7.2% 3.1% 3.2% 13.5% 2.6% 2.3% 4.6% 6.3% 3.3% 2.7% 2.8% 61.0% 1.1%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83] -4.00 [-17.83, 9.83] -4.00 [-13.73, 5.73] -3.00 [-11.37, 5.73] -2.00 [-13.48, 9.48] 0.01 [-12.71, 12.73] 0.30 [-12.17, 12.77] 1.80 [-0.86, 4.46] 2.00 [-18.05, 22.05]	Favorece [TENS] Favorece [Controle] Mean Difference
Test for overall effect: Total (95% CI) Heterogeneity: Chi ² = Fest for overall effect: Test for subaroup diffi) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneity: Chi ² = Test for overall effect: Sensorial Vieira (2012b) Vieira (2012b) Silva (2015b) Silva (2015b) Sartori (2018) Chu (2012) Jessurun (1998) Subtotal (95% CI)	Z = 7.53 57.43, df Z = 3.53 erences: Mean -6.6 2 -0.3 1.07, df Z = 1.32 10 17 -6 -3 -7 -2.37 -2.08 -5.2 0	(P < 0.0) T = 4 (P - (P = 0.0) (P = 0.0) $Chi^2 = -0$ TENS 5D 6.07 11.2 16.93 = 2 (P = 0.0) 16.55 14.04 10.05 8.6 15.62 12.19 13.03 3 20.52	00001) 69 < 0.0000 0004) 45.08.c 7 7 12 28 6 0.59); 19) 11 11 12 12 16 8 10 15 10 105	01); ² = ff = 1 (P C Mean 0 3 0 1 ² = 0% 20 21 -2 0 -5 -2.38 -2.38 -7 -2	< 0.000 ontrole SD 10.73 11.2 10.73 14.04 18.72 13.95 11.91 17.46 15.34 17.69 17	1001). *: Total 10 7 10 27 11 11 12 12 16 10 10 10 10 10 15	= 97.8% Weight 7.2% 3.1% 3.2% 13.5% 2.6% 2.3% 4.6% 6.3% 3.3% 2.7% 2.8% 61.0%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83] -4.00 [-17.83, 9.83] -4.00 [-13.73, 5.73] -3.00 [-11.31, 5.31] -2.00 [-13.48, 9.48] 0.01 [-12.71, 12.77] 1.80 [-0.86, 4.46] 2.00 [-18.05, 22.05]	Favorece [TENS] Favorece [Controle] Mean Difference
Test for overall effect: Total (95% CI) Heterogeneity: Chi ² = Fest for overall effect: Test for subaroup diff) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneity: Chi ² = Test for overall effect: Sensorial Vieira (2012b) Vieira (2012b) Silva (2015b) Silva (2015b) Silva (2015b) Silva (2015b) Sartori (2018) Sartori (2018) Chu (2012) Jessurun (1998)	Z = 7.53 57.43, df Z = 3.53 erences: Mean -6.6 2 -0.3 1.07, df Z = 1.32 10 17 -6 -3 -7 -2.37 -2.08 -5.2 0 5.60, df	(P < 0.0) T = 4 (P + (P = 0.0)) (P = 0.0) $Chi^2 = 4$ TENS SD 6.07 11.2 16.93 = 2 (P = 0) 16.55 14.04 10.05 8.6 15.62 12.19 13.03 3 20.52 = 8 (P = 0)	00001) 69 < 0.0000 0004) 45.08.c 7 7 12 28 5 0.59); 19) 11 11 12 12 16 8 10 15 10 105 5 0.69); 5 0.69); 5 0.69); 10 10 10 10 10 10 10 10 10 10	01); ² = ff = 1 (P C Mean 0 3 0 1 ² = 0% 20 21 -2 0 -5 -2.38 -2.38 -7 -2	< 0.000 ontrole SD 10.73 11.2 10.73 14.04 18.72 13.95 11.91 17.46 15.34 17.69 17	001). ₹: Total 10 7 10 27 11 11 12 12 16 10 10 15 5	= 97.8% Weight 7.2% 3.1% 3.2% 13.5% 2.6% 2.3% 4.6% 6.3% 3.3% 2.7% 2.8% 61.0% 1.1%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83] -4.00 [-17.83, 9.83] -4.00 [-13.73, 5.73] -3.00 [-11.37, 5.73] -2.00 [-13.48, 9.48] 0.01 [-12.71, 12.73] 0.30 [-12.17, 12.77] 1.80 [-0.86, 4.46] 2.00 [-18.05, 22.05]	Favorece [TENS] Favorece [Controle] Mean Difference
Test for overall effect: Total (95% CI) Heterogeneitly: Chi ² = Fest for overall effect: Fest for subaroup diffe) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneitly: Chi ² = Test for overall effect: Sensorial Heterogeneitly: Chi ² = Silva (2015b) Silva (2015b) Heterogeneitly: Chi ² = Test for overall effect:	Z = 7.53 57.43, df Z = 3.53 erences: Mean -6.6 2 -0.3 1.07, df Z = 1.32 10 17 -6 -3 -7 -2.37 -2.08 -5.2 0 5.60, df	(P < 0.0) T = 4 (P + (P = 0.0)) (P = 0.0) $Chi^2 = 4$ TENS SD 6.07 11.2 16.93 = 2 (P = 0) 16.55 14.04 10.05 8.6 15.62 12.19 13.03 3 20.52 = 8 (P = 0)	0001) 69 < 0.000 004) 45.08.c 7 7 7 7 28 5 0.59); 19) 11 12 12 16 8 10 15 5 0.69); 73)	01); ² = ff = 1 (P C Mean 0 3 0 1 ² = 0% 20 21 -2 0 -5 -2.38 -2.38 -7 -2	< 0.000 ontrole SD 10.73 11.2 10.73 14.04 18.72 13.95 11.91 17.46 15.34 17.69 17	1001). ₹ = Total 10 7 10 27 11 11 12 16 10 10 15 5 102	= 97.8% Weight 7.2% 3.1% 3.2% 13.5% 2.6% 2.3% 4.6% 6.3% 2.8% 61.0% 1.1% 86.5%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83] -4.00 [-17.83, 9.83] -4.00 [-13.73, 5.73] -3.00 [-11.31, 5.31] -2.00 [-13.48, 9.48] 0.01 [-12.71, 12.73] 0.30 [-12.17, 12.77] 1.80 [-0.86, 4.46] 2.00 [-18.05, 22.05] 0.39 [-1.84, 2.63]	Favorece [TENS] Favorece [Controle] Mean Difference
Test for overall effect: Total (95% CI) Heterogeneity: Chi ² = Fest for overall effect: Test for subaroup diff) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneity: Chi ² = Test for overall effect: Sensorial Vieira (2012b) Vieira (2012b) Silva (2015b) Silva (2015b) Silva (2015b) Silva (2015b) Silva (2015b) Silva (2015b) Silva (2015b) Silva (2015b) Silva (2015b) Silva (2017b) Chu (2012) Dessurun (1998) Subtotal (95% CI) Heterogeneity: Chi ² =	Z = 7.53 57.43, df Z = 3.53 erences: Mean -6.6 2 -0.3 1.07, df Z = 1.32 10 17 -6 -3 -7 -2.37 -2.08 -5.2 0 5.60, df	(P < 0.0) T = 4 (P + (P = 0.0)) (P = 0.0) $Chi^2 = 4$ TENS SD 6.07 11.2 16.93 = 2 (P = 0) 16.55 14.04 10.05 8.6 15.62 12.19 13.03 3 20.52 = 8 (P = 0)	00001) 69 < 0.0000 0004) 45.08.c 7 7 12 28 5 0.59); 19) 11 11 12 12 16 8 10 15 10 105 5 0.69); 5 0.69); 5 0.69); 10 10 10 10 10 10 10 10 10 10	01); ² = ff = 1 (P C Mean 0 3 0 1 ² = 0% 20 21 -2 0 -5 -2.38 -2.38 -7 -2	< 0.000 ontrole SD 10.73 11.2 10.73 14.04 18.72 13.95 11.91 17.46 15.34 17.69 17	1001). ₹ = Total 10 7 10 27 11 11 12 16 10 10 15 5 102	= 97.8% Weight 7.2% 3.1% 3.2% 13.5% 2.6% 2.3% 4.6% 6.3% 3.3% 2.7% 2.8% 61.0% 1.1%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83] -4.00 [-17.83, 9.83] -4.00 [-13.73, 5.73] -3.00 [-11.37, 5.73] -2.00 [-13.48, 9.48] 0.01 [-12.71, 12.73] 0.30 [-12.17, 12.77] 1.80 [-0.86, 4.46] 2.00 [-18.05, 22.05]	Favorece [TENS] Favorece [Controle] Mean Difference
Test for overall effect: Total (95% CI) Heterogeneitly: Chi ² = Fest for overall effect: Fest for subaroup diffe) Heart Rate Study or Subgroup Motor Hughes (1984) Miller (2000) Hughes (1984) Subtotal (95% CI) Heterogeneitly: Chi ² = Test for overall effect: Sensorial Heterogeneitly: Chi ² = Silva (2015b) Silva (2015b) Heterogeneitly: Chi ² = Test for overall effect:	Z = 7.53 57.43, df Z = 3.53 erences: Mean -6.6 2 -0.3 1.07, df Z = 1.32 10 17 -6 -3 -7 -2.37 -2.08 -5.2 0 5.60, df Z = 0.34	(P < 0.0) T = 4 (P - (P = 0.0) (P = 0.0) $Chi^2 = -0$ 11.2 16.93 = 2 (P = 0.0) 16.55 14.04 10.05 8.6 15.62 12.19 13.03 3 20.52 = 8 (P = 0.0)	00001) 69 < 0.000 004) 45.08.c 7 7 7 7 28 5 0.59); 19) 11 12 12 16 8 10 15 5 0.69); 73) 133	01); I [#] = ff = 1 (P C Mean 0 3 0 I [#] = 0% 20 21 -2 0 -5 -2.38 -2.38 -7 -2 I [#] = 0%	< 0.000 ontrole SD 10.73 11.2 10.73 11.95 11.95 11.91 1.746 15.34 15.34 17.69	1001). ₹ = Total 10 7 10 27 11 11 12 16 10 10 15 5 102	= 97.8% Weight 7.2% 3.1% 3.2% 13.5% 2.6% 2.3% 4.6% 6.3% 2.8% 61.0% 1.1% 86.5%	Mean Difference IV, Fixed, 95% CI -6.60 [-14.34, 1.14] -1.00 [-12.73, 10.73] -0.30 [-11.96, 11.36] -3.82 [-9.47, 1.83] -4.00 [-17.83, 9.83] -4.00 [-13.73, 5.73] -3.00 [-11.31, 5.31] -2.00 [-13.48, 9.48] 0.01 [-12.71, 12.73] 0.30 [-12.17, 12.77] 1.80 [-0.86, 4.46] 2.00 [-18.05, 22.05] 0.39 [-1.84, 2.63]	Favorece [TENS] Favorece [Controle] Mean Difference

Figure 4. Forest plot comparing the effect of TENS at motor and sensory thresholds on blood flow (A), peripheral vascular resistance (B), and heart rate (C). [Blood flow; Control; Sensory; Low Frequency; High Frequency; Peripheral vascular resistance; Heart rate; Favors TENS; Favors Control].

Arterial pressure results

Mean blood pressure


Two studies analyzed mean blood pressure using TENS at the motor excitability threshold^(5, 7) and two used TENS at the sensory level^(10, 15), one of which compared young and older adults⁽¹⁵⁾. In the overall analysis, TENS led to a significant reduction in MBP (04 studies, n = 104 individuals, WMD = -6.86 mmHg, 95% CI: -12.06 to -1.66 mmHg, I² = 33%). In the subgroup analyses, the effect of TENS at the motor threshold was inconclusive (02 studies, n = 60 individuals, WMD = -4.32 mmHg, 95% CI: -10.17 to 1.52 mmHg, I² = 0%), whereas a significant reduction in MBP was found when TENS was used at the sensory threshold (02 studies, n = 44 individuals, WMD = -16.38 mmHg, 95% CI: -27.71 to -5.05 mmHg, I² = 0%) (Figure 5a).

Systolic blood pressure

Four studies analyzed systolic blood pressure using TENS at the motor excitability threshold ⁽³⁻⁶⁾, and six studies used TENS at the sensory level ^(9, 11, 12, 14), one of which compared young and older adults 15. In the overall analysis, a significant reduction in SBP was found (10 studies, n = 365 individuals, WMD = 0.31 mmHg, 95% CI: 0.02 to 0.60 mmHg, I² = 98%). In the subgroup analyses, TENS at the motor threshold led to a reduction in SBP (n = 217 individuals, WMD = -0.34 mmHg, 95% CI: 0.05 to 0.63 mmHg, I² = 99%), whereas the effect of the sensory threshold was inconclusive (n = 148 individuals, WMD = -1.45 mmHg, 95% CI: -3.80 to 0.91 mmHg, I² = 0%) (Figure 5b).

Diastolic blood pressure

Three studies analyzed diastolic blood pressure using TENS at the motor excitability threshold⁽⁴⁻⁶⁾, and four studies used TENS at the sensory level^(9, 11, 12, 14), one of which compared young and older adults 14. In the overall analysis, a significant reduction in DBP was found (n = 275 individuals, WMD = -2.93 mmHg, 95% CI: -4.62 to -1.24 mmHg, $I^2 = 0\%$). In the subgroup analyses, a significant reduction in DBP occurred with TENS was used at the sensory threshold (n = 148 individuals, WMD = -3.18 mmHg, 95% CI: -5.17 to -1.20 mmHg, $I^2 = 0\%$), whereas the effect of the motor threshold was inconclusive (n = 127 individuals, WMD = -2.27 mmHg, 95% CI: -5.50 to 0.96 mmHg, $I^2 = 0\%$) (Figure 5c).

Figure 5. Forest plot comparing the effect of TENS at motor and sensory thresholds on mean blood pressure (A), systolic blood pressure (B), and diastolic blood pressure (C). [Mean blood pressure; Control; Sensory; Low Frequency; High Frequency; Systolic blood pressure; Diastolic blood pressure; Favors TENS; Favors Control].

Local or ganglion application site

Blood flow

Three studies analyzed blood flow using TENS applied locally^(7, 8, 13) and two used TENS applied in the ganglion region^(10, 15), one of which compared young and older adults 15. Despite of significant increase in blood flow in the subgroup analyses ganglion application (02 studies, n = 82 individuals, WMD = 1.61 ml/min, 95% CI: 0.73 to 2.50 ml/min, $I^2 = 84\%$), results of the overall (05 studies, n = 151 individuals, WMD = 0.58 ml/min, 95% CI: 0.16 to 1.01 ml/min, $I^2 = 78\%$) and local application (03 studies, n = 69 individuals, WMD = 0.27 ml/min, 95% CI: -0.21 to 0.76 ml/min, $I^2 = 42$ subgroup %) analysis were inconclusive (Figure 6a).

Peripheral vascular resistance and heart rate

Two studies analyzed peripheral vascular resistance using TENS applied locally^{(7, 8),} and two used ganglion application 10,15, one of which compared young and older adults⁽¹⁵⁾. In the overall analysis, peripheral vascular resistance was significantly reduced (04 studies, n = 136 individuals, WMD = -5.10 arbitrary units, 95% CI: -7.47 to -2.74 arbitrary units, I² = 86%). In the subgroup analyses, the effect of locally applied TENS was inconclusive (02 studies, n = 54 individuals, WMD = -1.30 arbitrary units, 95% CI: -4.14 to 1.55 arbitrary units, I² = 0%), whereas ganglion application led to a significant reduction in peripheral vascular resistance (02 studies, n = 82 individuals, WMD = -13.60 arbitrary units, 95% CI: -17.86 to -9.35 arbitrary units, I² = 65%) (Figure 6b).

Five studies analyzed heart rate using TENS applied locally^(4, 7, 12, 13), and for used ganglion application 11,14,15, two of which compared young and older adults^(14, 15). Both overall and subgroup analysis don't result in significant change in heart rate (Overall: 09 studies, n = 232 individuals, WMD = -3.27 bpm, 95% CI: -6.59 to 0.06 bpm, I² = 0%; Local application: 05 studies, n = 102 individuals, WMD = -3.14 bpm, 95% CI: -8.05 to 1.78 bpm, I² = 0%; Ganglion application: 04 studies, n = 130 individuals, WMD = -3.38 bpm, 95% CI: -7.90 to 1.14 bpm, I² = 0%) (Figure 6c).

A) Blood Flow									
,	1	TENS		Co	ontrole			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Local	0.2	1 07	20	0.2	0.27	20	EG 104	0 00 1 0 57 0 57	
Sherry (2001)	-0.2 6.6	1.27 0.83	20 7	-0.2 5.6	0.27 0.95	20 7	56.1% 20.8%	0.00 [-0.57, 0.57]	L_
Miller (2000) Jessurun (1998)		15.25	10	-1	12.3	5	0.1%	1.00 [0.07, 1.93]	
Subtotal (95% CI)	5	15.25	37	-1	12.5	32	76.9%	4.00 [-10.34, 18.34] 0.27 [-0.21, 0.76]	•
Heterogeneity: Chi ² =	= 3 47 df	= 2 (P =		r = 47%		01	101070	out [out i, ou of	ſ
Fest for overall effect				- 12 /					
Ganglionar									
Vieira (2012a)	-0.7	1.65	11	-0.4	1.65	11	9.5%	-0.30 [-1.68, 1.08]	
Vieira (2012b)	0.4	11.63	11	-0.2	11.93	11	0.2%	0.60 [-9.25, 10.45]	
Cipriano (2014)	9	1.87	20	6	1.8	18	13.3%	3.00 [1.83, 4.17]	
Subtotal (95% CI)			42			40	23.1%	1.61 [0.73, 2.50]	•
Heterogeneity: Chi² = Test for overall effect				2); I ² = 8-	4%				
Fotal (95% CI)			79			72	100.0%	0.58 [0.16, 1.01]	
and a second	- 22.06 4	f= 6 /P		13)· IZ - 1	79%	12	100.070		*
Heterogeneity: Chi² = Test for overall effect				5), F=	1070				-10 -5 0 5 10
Test for subaroup di				f=1 (P:	= 0.009). I² = 8	5.1%		Favorece [Controle] Favorece [TENS]
) Peripheral V	ascula	r Resi	stand	ce					
		TENS			ontrole			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% CI
Local	40.7	2.25	7	12.4	2.40	7	CC 00/	4 20 / 4 40 4 501	-
Miller (2000)	-13.7	2.25	7	-12.4	3.19	7	66.9%	-1.30 [-4.19, 1.59]	
Sherry (2001) Subtotal (95% CI)	1.5	20.16	20 27	2.1	30.26	20 27	2.2% 69.1%	-1.20 [-17.14, 14.74] -1.30 [-4.14, 1.55]	
Heterogeneity: Chi ² =			0.99);	²=0%		21	00.170	-130[-4,14, 135]	
Test for overall effect	t: Z = 0.89	(P = 0.,	57)						
Ganglionar									
Vieira (2012a)	1	11.93	11	30	19.3	11	3.1%	-29.00 [-42.41, -15.59]	
Cipriano (2014)	28	8	20	40	7	18	24.6%	-12.00 [-16.77, -7.23]	
Vieira (2012b)	5	11.93	11	16	18.72	11	3.2%	-11.00 [-24.12, 2.12]	
Subtotal (95% CI)			42			40	30.9%	-13.60 [-17.86, -9.35]	•
Heterogeneity: Chi² = Test for overall effect				² = 65%	,				
Total (95% CI)			69			67	100.0%	-5.10 [-7.47, -2.74]	•
Heterogeneity: Chi ² =	= 27.88 d	f= 4 (P		1) = !	86%		1001010	-0.10[-1.11]-2.14]	
Test for overall effect				,,,, = ,	00 /0				-50 -25 0 25 50
Test for subaroup di				df=1 (P	< 0.00	001). I ^z	= 95.5%		Favorece [TENS] Favorece [Controle]
C) Heart Rate									
11 21 1		TENS			Contro	le		Mean Difference	Mean Difference
Study or Subgroup	p Mea			al Mea	n S	D Tot	al Weig	ht IV, Fixed, 95% CI	IV, Fixed, 95% CI
Local		-							
Hughes (1984)	-6.				0 10.7		0 18.5		
Hollman (1997)		7 15.6			5 17.4		6 8.4		
Miller (2000)		2 11.			3 11.			% -1.00 [-12.73, 10.73]	
Hughes (1984)		3 16.9			0 10.7			% -0.30 [-11.96, 11.36]	
Jessurun (1998)		0 20.5			2 17.6		5 2.8		
Subtotal (95% CI)			5			4	8 45.8	-3.14 [-8.05, 1.78]	•
Heterogeneity: Chi Test for overall effe); I ² = 0 ⁴	%				
Ganglionar							4 0-	40.001.00.00.000	
Vieira (2012b)		0 16.5			0 14.0			% -10.00 [-22.83, 2.83]	
Vieira (2012a)		7 14.0			1 18.7		1 5.8		
Silva (2015b)	-	6 10.0	5 1	2 -	2 13.9	5 1	2 11.7	% -4.00 [-13.73, 5.73]	

1101101 (20120)		1 4.04		-	10.14		0.0.00	1.00[11.00]0.00]	
Silva (2015b)	-6	10.05	12	-2	13.95	12	11.7%	-4.00 [-13.73, 5.73]	1
Silva (2015a)	-3	8.6	12	0	11.91	12	16.0%	-3.00 [-11.31, 5.31]]
Sartori (2018)	-2.37	12.19	8	-2.38	15.34	10	6.8%	0.01 [-12.71, 12.73]	1
Sartori (2018)	-2.08	13.03	10	-2.38	15.34	10	7.1%	0.30 [-12.17, 12.77]	1
Subtotal (95% CI)			64			66	54.2%	-3.38 [-7.90, 1.14]] 🔶
Heterogeneity: Chi ² =	1.66, df	= 5 (P =	0.89);	² = 0%					
Test for overall effect:	Z=1.47	7 (P = 0.1	4)						
Total (95% CI)			118			114	100.0%	-3.27 [-6.59, 0.06]	1 🔶
Heterogeneity: Chi ² =	3.08, df	= 10 (P =	= 0.98)	$ ^{2} = 09$	6				-100 -50 0 50 100
Test for overall effect:	Z=1.92	2 (P = 0.0)	15)						-100 -50 0 50 100 Favorece [TENS] Favorece [Controle]
Test for subaroup diff	erences	: Chi ² = 1	0.01. d	f=1 (P	= 0.94).	$ ^{2} = 0\%$	6		Favorece [FEN3] Favorece [Controle]

Figure 6. Forest plot comparing the effect of TENS applied locally or over ganglion on blood flow (A), peripheral vascular resistance (B), and heart rate (C). [Blood flow; Control; Ganglion; Low Frequency; High Frequency; Peripheral vascular resistance; Heart rate; Favors TENS; Favors Control].

Arterial pressure results

Mean blood pressure

Two studies analyzed mean blood pressure using TENS applied locally^(5, 7) and two applied TENS over the stellate ganglion^(10, 15), one of which compared young and older adults⁽¹⁵⁾. In the overall analysis, TENS led to a significant reduction in MBP (04 studies, n = 142 individuals, WMD = -8.61 mmHg, 95% CI: -13.21 to -4.00 mmHg, I² = 38%). In the subgroup analyses, only ganglion application led to a significant reduction in MBP (n = 82 individuals, WMD = -15.6 mmHg, 95% CI: -23.08 to -8.13 mmHg, I² = 0%) whereas the effect of locally applied TENS was inconclusive (n = 60 individuals, WMD = -4.32 mmHg, 95% CI: -10.17 to 1.52 mmHg, I² = 0%), whereas (Figure 7a).

Systolic blood pressure

Studies analyzed systolic blood pressure using TENS applied locally^(4, 5, 12), and three used ganglion application^(11, 14), one of which compared young and older adults⁽¹⁴⁾. In the overall analysis, a significant reduction in SBP was found (07 studies, n = 205 individuals, WMD = -4.50 mmHg, 95% CI: -9.31 to -0.31 mmHg, I² = 0%). However, in the subgroup analyses, the effects of local application (n = 119 individuals, WMD = -4.44 bpm, 95% CI: -11.44 to 2.56 bpm, I² = 0%) and ganglion application (n = 86 individuals, WMD = -4.55 bpm, 95% CI: -11.17 to 2.07 bpm, I² = 0%) were inconclusive (Figure 7b).

Diastolic blood pressure

Studies analyzed diastolic blood pressure using TENS applied locally (4, 5, 12), one of which analyzed low-frequency and high-frequency TENS (4), and three applied TENS over the stellate ganglion (11, 14), one of which compared young and older adults (14) and one analyzed low-frequency and high-frequency TENS (11). In the overall analysis, no significant change was found (n = 205 individuals, WMD = 0.09 mmHg, 95% CI: -3.69 to 3.86 mmHg, I² = 0%). Moreover, in the subgroup analyses, the effects of local application (n = 119 individuals, WMD = -0.88 bpm, 95% CI: -5.73 to 3.96 bpm, I² = 0%) and ganglion application (n = 86 individuals, WMD = 1.58 bpm, 95% CI: -4.44 to 7.60 bpm, I² = 0%) were inconclusive (Figure 7c).

	TENS							Mean Difference	Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl		
Local											
Kaada (1991)	-3	16	25	3	14.43	21	27.4%	-6.00 [-14.80, 2.80]			
Miller (2000)	0	7.47	7	3	7.47	7	34.6%	-3.00 [-10.83, 4.83]			
Subtotal (95% CI)			32			28	62.0%	-4.32 [-10.17, 1.52]	•		
Heterogeneity: Chi ² =	: 0.25, df	= 1 (P =	= 0.62);	I ² = 0%							
Test for overall effect	: Z = 1.45	5 (P = 0.	15)								
Ganglionar											
vieira (2012b)	13	16.55	11	33	16.55	11	11.1%	-20.00 [-33.83, -6.17]			
Cipriano (2014)	-13	15.62	20	2	15.62	18	21.4%	-15.00 [-24.95, -5.05]			
vieira (2012a)	31	25.85	11	40	21.19	11	5.4%	-9.00 [-28.75, 10.75]			
Subtotal (95% CI)			42			40	38.0%	-15.60 [-23.08, -8.13]	•		
Heterogeneity: Chi ² =	: 0.83, df	= 2 (P =	= 0.66);	² = 0%							
Test for overall effect	: Z = 4.09	3(P < 0.)	0001)								
			74			68	100.0%	-8.61 [-13.21, -4.00]	•		
Total (95% CI)											
	: 6.50, df	= 4 (P =	= 0.16);	1 ² = 389	6						
Total (95% Cl) Heterogeneity: Chi² = Test for overall effect				I ² = 389	6				-100 -50 0 50 100 Favorece [TENS] Favorece [Controle]		

B) Systolic Blood Pressure

	TENS Controle							Mean Difference	Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI		
Local											
Hollman (1997)	1	23.35	16	4	22.36	16	9.2%	-3.00 [-18.84, 12.84]			
Hughes (1984)	-5	13.18	9	-1	19.92	10	10.2%	-4.00 [-19.05, 11.05]			
Hughes (1984)	-2	12.1	12	-1	19.93	10	11.6%	-1.00 [-15.12, 13.12]			
Kaada (1991)	-4	21.17	25	4	20.13	21	16.2%	-8.00 [-19.96, 3.96]			
Subtotal (95% CI)			62			57	47.2%	-4.44 [-11.44, 2.56]	•		
Heterogeneity: Chi ² =	0.60, df	= 3 (P =	= 0.90);	I ² = 0%							
Test for overall effect:	Z=1.24	4 (P = 0.	21)								
Ganglionar											
Sartori (2018)	-2.68	21.7	8	1	42.12	10	2.5%	-3.68 [-33.81, 26.45]			
Sartori (2018)	7.75	30.33	10	1	42.12	10	2.2%	6.75 [-25.42, 38.92]			
Silva (2015a)	-6	10.29	12	1	10.65	12	33.0%	-7.00 [-15.38, 1.38]			
Silva (2015b)	2	13.69	12	3	17.13	12	15.0%	-1.00 [-13.41, 11.41]			
Subtotal (95% CI)			42			44	52.8%	-4.55 [-11.17, 2.07]	•		
Heterogeneity: Chi ² =	1.12, df	= 3 (P =	= 0.77);	I ² = 0%							
Test for overall effect:	Z=1.35	5 (P = 0.	18)								
Total (95% CI)			104			101	100.0%	-4.50 [-9.31, 0.31]	•		
Heterogeneity: Chi ² =	1.72, df	= 7 (P =	= 0.97);	I ² = 0%							
Test for overall effect:									-100 -50 0 50 10		
Test for subaroup diff				f=1 (P	= 0.98)	$ ^{2} = 09$	6		Favorece [TENS] Favorece [Controle]		

C) Diastolic Blood Pressure

		TENS		C	ontrole			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Local									
Kaada (1991)	-2	14.86	25	2	13.02	21	21.9%	-4.00 [-12.06, 4.06]	
Hollman (1997)	0	18.44	16	2	24.04	16	6.5%	-2.00 [-16.85, 12.85]	
Hughes (1984)	-1	11.75	12	-1	10.34	10	16.7%	0.00 [-9.23, 9.23]	-+-
Hughes (1984) Subtotal (95% CI)	2	10.82	9 62	-1	10.34	10 57	15.6% 60.7%	3.00 [-6.54, 12.54] -0.88 [-5.73, 3.96]	*
Heterogeneity: Chi ² =	1.27, df	= 3 (P =	0.74);	$ ^{2} = 0\%$					
Test for overall effect:	Z = 0.38	6 (P = 0.	72)						
Ganglionar									
Sartori (2018)	-0.39	15.97	8	0.65	25.96	10	3.7%	-1.04 [-20.57, 18.49]	
Silva (2015b)	3	11.26	12	2	15.18	12	12.4%	1.00 [-9.69, 11.69]	
Silva (2015a)	3	10.86	12	1	10.54	12	19.4%	2.00 [-6.56, 10.56]	
Sartori (2018)	4.65	18.05	10	0.65	25.96	10	3.7%	4.00 [-15.60, 23.60]	<u> </u>
Subtotal (95% CI)			42			44	39.3%	1.58 [-4.44, 7.60]	•
Heterogeneity: Chi ² =	0.15, df	= 3 (P =	: 0.99);	I ² = 0%					
Test for overall effect:	Z = 0.52	2 (P = 0.	61)						
Total (95% CI)			104			101	100.0%	0.09 [-3.69, 3.86]	+
Heterogeneity: Chi ² =	1.81, df	= 7 (P =	: 0.97);	I ² = 0%					-100 -50 0 50 100
Test for overall effect:	Z = 0.04	4 (P = 0.	96)						-100 -50 0 50 100 Favorece [TENS] Favorece [Control]
Test for subaroup diff	erences	: Chi ² =	0.39. d	lf=1 (P	= 0.53).	I ² = 0%	6		Favorece (FENO) Favorece (Control)

Figure 7. Forest plot comparing the effect of TENS applied locally or over ganglion on mean blood pressure (A), systolic blood pressure (B), and diastolic blood pressure (C). [Mean blood pressure; Control; Ganglion; Low Frequency; High Frequency; Systolic blood pressure; Diastolic blood pressure; Favors TENS; Favors Control].

DISCUSSION

The present review examined the effect of TENS on blood flow, peripheral vascular resistance, heart rate, and blood pressure responses in apparently healthy individuals and patients with cardiovascular disease in randomized double-blind clinical trials. TENS with HF and sensorial threshold had a satisfactory effect on blood flow and diastolic blood pressure. Moreover, changes in peripheral vascular resistance and mean blood pressure occurred with the application of ganglionic TENS and sensory threshold. Finally, the application of TENS did not affect the HR variable.

These findings may be linked to the hypothesis that TENS has a vasodilatation effect, increasing both local and peripheral blood flow when applied at HF, depending on the site where the current is applied. Moreover, TENS applied at the sensory threshold reduced peripheral vascular resistance, corroborated with Chen et al.⁽⁶²⁾ resulting in significant improvements in blood flow. In contrast, the application motor failed to show any effect on blood flow. This response may be associated with a greater capacity to produce analgesia with TENS-HF even in situations of high tolerance to the use of other opioids such as morphine when compared to the use of low-pacing frequencies⁽⁸⁵⁾.

Furthermore, it is known that the response of blood flow and vascular resistance improvement is directly dependent on blood pressure. TENS applied at HF significantly reduced both MBP and DBP (by around 9.45 and 2.87 mmHg, respectively), while LF reduced only SBP (3.39 mmHg) (Figure 2). The effects of blood pressure reduction reported in this meta-analysis are only slightly higher than those achieved with well-established interventions, such as aerobic exercise, which has been demonstrated to reduce systolic and diastolic blood pressure by 3.84 and 2.58 mmHg, respectively⁽⁸⁶⁾, being considered clinically significant^(87, 88). Another meta-analysis reports that, in normotensive subjects, the standard dose of an anti-hypertensive drug produces an estimated 5.7 mmHg reduction in systolic blood pressure and a 3.6 mmHg in diastolic blood pressure⁽⁸⁹⁾. According to the authors, a 10 mmHg reduction in systolic pressure or 5 mmHg reduction in diastolic pressure using any of the main classes of blood pressure medication reduces cardiovascular disease by one-quarter and stroke by one-third, independently of the presence or absence of vascular disease or arterial hypertension before treatment⁽⁸⁹⁾.

Thus, patients with heart failure or coronary artery disease could benefit from this therapy due to the sympathetic inhibitory effect induced electrically by high-frequency TENS. Several researchers have hypothesized that TENS at different intensities and frequencies can reduce sympathetic activity and produce the local release of endothelial factors that provoke greater vascular relaxation^(4, 24, 25, 71, 90). The sympathetic inhibitory effect produced by high-frequency TENS is explained by a functional reduction in the sensitivity of nicotinic receptors located on the ganglion level of sympathetic fibers^(24, 25, 71, 91). Another possible mechanism is the release of endogenous vasodilators, which is explained by the antidromic activation of sensory fibers by low-frequency TENS.

The depolarization of sensory nerve endings induced by antidromic electrical current seems to trigger the release of endothelial factors that act on the target organ of the stimulated fiber^(91, 93, 94). Both mechanisms may be involved in the hemodynamic effects induced by TENS and may be associated with other effects, such as pain relief and an increase in the recruitment of collateral blood vessels.

The magnitude of the hemodynamic effects induced by TENS may depend on both the frequency and application site. Different application sites target different organs, with different effects achieved on the peripheral^(8, 15, 24, 25, 71), cardiac^(95, 96) and systemic⁽⁹⁷⁾ levels. However, the small number of studies that have addressed the influence of TENS on blood pressure and heart rate and the significant differences in the methods employed in these studies diminish our ability to perform more robust analyses. Nonetheless, the present meta-analysis demonstrates the blood pressure-reducing effect of high-frequency TENS when applied at the sensory threshold and in the ganglion region.

In our study, it was evident that the application of TENS in the cervicothoracic region (ganglion) results in increasing blood flow. Cipriano Júnior et al.(10) tested the hypothesis that TENS applied over the stellate ganglion 24 hours after myocardial revascularization surgery has both analgesic capacity and contributes to the vascularization of the tissues by increasing blood flow. The authors found that TENS reduced sympathetic activity and increased blood flow by up to 50% in patients with peripheral vascular disease. Vieira et al.⁽¹⁵⁾ performed the application of high-frequency TENS in the cervicothoracic (ganglion) region in healthy young and older adults with an effective increase in the blood flow redistribution associated with a reduction in sympathetic/parasympathetic balance⁽¹⁵⁾. Also, Jessurun et al.⁽¹³⁾ studied the effect of high-frequency TENS on coronary vasomotricity in patients with angina. TENS was applied to the lower back region for approximately six minutes and all patients exhibited a 90% reduction in the lumen of the anterior descending coronary artery. The authors concluded that TENS can be used in patients with coronary stenosis to improve the metabolism and increase the velocity of coronary flow at rest, thereby promoting the oxygenation of the myocardium due to the coronary vasomotricity effect. These findings agree with the results of the present meta-analysis and confirm the hypothesis that TENS has important vasodilatation effects.

On the other hand, the application of TENS has not resulted in a minimal gain in blood flow or vascular resistance. However, when we individually analyze the studies, Sherry et al.⁽⁸⁾ found that TENS administered at an intensity 25% above the motor threshold caused a "transitory" increase in blood flow, which did not occur when applied at or below the motor threshold. Indergand et al.(19) failed to show any benefit in increasing local blood flow with the application of 30 minutes of high-frequency and low-frequency TENS in the tibial and peroneal nerves (locally). Miller et al.⁽⁷⁾ compared the effect of TENS and voluntary muscle contraction regarding the degree of activation and increase in blood flow, applying the electrodes over the tibial nerve in healthy adults aged 18 to 49 years for approximately ten minutes. The authors found an increase in blood flow and consequent reduction in peripheral vascular resistance measured in the calf during both voluntary contraction and TENS. However, it was observed with different durations, where the effects of TENS on the first day was 230% and on the second day 191%, whereas the voluntary contraction on the first day was 137% on the second day 149%, and fifteen minutes after exercise, TENS duration was 72% and 81% when compared to the voluntary contraction protocol, which presented 29% and 38%, but this study concludes that TENS is no more effective than voluntary exercise.

In the present meta-analysis, the hemodynamic effects induced by TENS were investigated in groups based on the type of electrical current and population analyzed. A high-frequency TENS proved to have a better effect on the increase in blood flow compared to low-frequency TENS. About blood pressure, low-frequency TENS had a better effect on modulating systolic blood pressure, whereas high-frequency TENS had a better effect on modulating diastolic blood pressure. These findings may be partially explained by the possible normal sympathetic tone in apparently healthy individuals, who may have a greater hemodynamic response to endogenous vasodilators released during low-frequency TENS than the sympathetic inhibition induced by high-frequency TENS, but this aspect requires further investigation.

Limitations of the study

The present study has limitations that should be considered. The scarcity of studies published on this topic, the poor quality of the studies selected, the lack of standardization in the methods, and the considerable variation in the evaluation of blood flow underscore the need to consider the present findings with caution.

CONCLUSION

The studies submitted to the present meta-analysis demonstrate that TENS has several benefits and plays an important role in hemodynamics, exerting a direct effect on increasing blood flow and improving blood pressure.

Author Contributions: Substantial contributions to the conception and design of the work were made by LIAC, NMAR, FVL, GCJ, WAS, and GRC. The bibliographical research was carried out by the authors LIAC, NMAR, and FVL. Statistical analysis was carried out by authors LIAC, GCJ, and GRC. The writing and review of the work, as well as the approval of the final version, were carried out by LIAC, NMAR, FVL, GCJ, WAS, MEPS, MAT, and GRC. Furthermore, all aspects of this work relating to accuracy or completeness have been warranted by LIAC, NMAR, FVL, GCJ, WAS, MEPS, MAT, and GRC.

Financial Support: MEPS and MAT PIBIC scholarship recipients at UniEvangélica.

Conflict of interest: There are no conflicts of interest.

REFERENCES

- 1. Nnoaham KE, Kumbang J. Transcutaneous electrical nerve stimulation (TENS) for chronic pain. Cochrane Database Syst Rev. Jul 16 2008(3):CD003222.
- 2. Bergeron-Vézina K, Corriveau H, Martel M, Harvey M-P, Léonard G. High- and low-frequency transcutaneous electrical nerve stimulation does not reduce experimental pain in elderly individuals. Pain. 2015;156(10):2093-2099.
- 3. Campbell TS, Ditto B. Exaggeration of blood pressure-related hypoalgesia and reduction of blood pressure with low frequency transcutaneous electrical nerve stimulation. Psychophysiology. Jul 2002;39(4):473-481.
- 4. Hughes GS, Jr., Lichstein PR, Whitlock D, Harker C. Response of plasma beta-endorphins to transcutaneous electrical nerve stimulation in healthy subjects. Phys Ther. Jul 1984;64(7):1062-1066.
- 5. Kaada B, Flatheim E, Woie L. Low-frequency transcutaneous nerve stimulation in mild/moderate hypertension. Clin Physiol. Mar 1991;11(2):161-168.
- Lazarou L, Kitsios A, Lazarou I, Sikaras E, Trampas A. Effects of the intensity of Transcutaneous Electrical Nerve Stimulation (TENS) on pressure pain threshold and blood pressure in healthy humans: A randomized, double-blind, placebo-controlled trial. Clin J Pain. Nov-Dec 2009;25(9):773-780.
- 7. Miller BF, Gruben KG, Morgan BJ. Circulatory responses to voluntary and electrically induced muscle contractions in humans. Phys Ther. Jan 2000;80(1):53-60.
- 8. Sherry JE, Oehrlein KM, Hegge KS, Morgan BJ. Effect of burst-mode transcutaneous electrical nerve stimulation on peripheral vascular resistance. Phys Ther. Jun 2001;81(6):1183-1191.
- 9. Chu H, Li MH, Juan SH, Chiou WY. Effects of transcutaneous electrical nerve stimulation on motion sickness induced by rotary chair: a crossover study. J Altern Complement Med. May 2012;18(5):494-500.
- Cipriano G, Jr., Neder JA, Umpierre D, et al. Sympathetic ganglion transcutaneous electrical nerve stimulation after coronary artery bypass graft surgery improves femoral blood flow and exercise tolerance. J Appl Physiol (1985). Sep 15 2014;117(6):633-638.
- 11. do Amaral Sartori S, Stein C, Coronel CC, Macagnan FE, Plentz RDM. Effects of Transcutaneous Electrical Nerve Stimulation in Autonomic Nervous System of Hypertensive Patients: A Randomized Controlled Trial. Curr Hypertens Rev. 2018;14(1):66-71.

- 12. Hollman JE, Morgan BJ. Effect of transcutaneous electrical nerve stimulation on the pressor response to static handgrip exercise. Phys Ther. Jan 1997;77(1):28-36.
- 13. Jessurun GA, Tio RA, De Jongste MJ, Hautvast RW, Den Heijer P, Crijns HJ. Coronary blood flow dynamics during transcutaneous electrical nerve stimulation for stable angina pectoris associated with severe narrowing of one major coronary artery. Am J Cardiol. Oct 15 1998;82(8):921-926.
- 14. da Silva ML, Chiappa GR, da Silva VM, et al. Effect of transcutaneous electrical nerve stimulation on peripheral to central blood pressure ratio in healthy subjects. Clin Physiol Funct Imaging. Jul 2016;36(4):293-297.
- 15. Vieira PJ, Ribeiro JP, Cipriano G, Jr., et al. Effect of transcutaneous electrical nerve stimulation on muscle metaboreflex in healthy young and older subjects. Eur J Appl Physiol. Apr 2012;112(4):1327-1334.
- Hallén K, Hrafnkelsdóttir T, Jern S, B B, Mannheimer C, DuttaRoy S. Transcutaneous electrical nerve stimulation induces vasodilation in healthy controls but not in refractory angina patients. J Pain Symptom Manage. Jul 2010;40(1):95-101. doi: 110.1016/j.jpainsymman.2009.1012.1009. Epub 2010 Jun 1018.
- 17. Zheng SX, Pan XH, Xu JS, Xiu CY, Dong YQ, Zhu X. Variations in energy metabolism along the pericardium meridian and its relationship with visceral function adjustments during electroacupuncture. BMC Complement Altern Med. Aug 30 2014;14:323.
- 18. Sluka KA, Walsh D. Transcutaneous electrical nerve stimulation: basic science mechanisms and clinical effectiveness. The journal of pain: official journal of the American Pain Society. Apr 2003;4(3):109-121.
- 19. Indergand HJ, Morgan BJ. Effect of interference current on forearm vascular resistance in asymptomatic humans. Phys Ther. Apr 1995;75(4):306-312.
- 20. Mortensen SP, Dawson EA, Yoshiga CC, et al. Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans. J Physiol. Jul 1 2005;566(Pt 1):273-285.
- 21. Santos FV, Chiappa GR, Vieira PJ, Umpierre D, Ribeiro JP, Cipriano G, Jr. Interferential electrical stimulation improves peripheral vasodilatation in healthy individuals. Braz J Phys Ther. May-Jun 2013;17(3):281-288.
- 22. Sandberg ML, Sandberg MK, Dahl J. Blood flow changes in the trapezius muscle and overlying skin following transcutaneous electrical nerve stimulation. Phys Ther. Aug 2007;87(8):1047-1055.
- 23. Kaada B. Vasodilation induced by transcutaneous nerve stimulation in peripheral ischemia (Raynaud's phenomenon and diabetic polyneuropathy). Eur Heart J. Aug 1982;3(4):303-314.
- 24. Bajada S, Touraine A. Transcutaneous sympathetic stimulation: effects of autonomic nervous function. Clin Exp Neurol. 1981;17:139-145.
- 25. Wong RA, Jette DU. Changes in sympathetic tone associated with different forms of transcutaneous electrical nerve stimulation in healthy subjects. Phys Ther. Apr 1984;64(4):478-482.
- 26. Furlan AD, Pennick V, Bombardier C, van Tulder M, Editorial Board CBRG. 2009 updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine (Phila Pa 1976). Aug 15 2009;34(18):1929-1941.
- 27. Campos FV, Neves LM, Da Silva VZ, et al. Hemodynamic Effects Induced by Transcutaneous Electrical Nerve Stimulation in Apparently Healthy Individuals: A Systematic Review With Meta-Analysis. Archives of physical medicine and rehabilitation. May 2016;97(5):826-835.
- 28. Verhagen AP, de Vet HC, de Bie RA, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. Dec 1998;51(12):1235-1241.

- 29. Chauhan A, Mullins PA, Thuraisingham SI, Taylor G, Petch MC, Schofield PM. Effect of transcutaneous electrical nerve stimulation on coronary blood flow. Circulation. Feb 1994;89(2):694-702.
- 30. Cheung LC, Jones AY. Effect of Acu-TENS on recovery heart rate after treadmill running exercise in subjects with normal health. Complement Ther Med. Jun 2007;15(2):109-114.
- 31. Jacobs MJ, Jörning PJ, Beckers RC, et al. Foot salvage and improvement of microvascular blood flow as a result of epidural spinal cord electrical stimulation. J Vasc Surg. Sep 1990;12(3):354-360.
- 32. Jacobsson F, Himmelmann A, Bergbrant A, Svensson A, Mannheimer C. The effect of transcutaneous electric nerve stimulation in patients with therapy-resistant hypertension. J Hum Hypertens. Dec 2000;14(12):795-798.
- 33. Jessurun GA, Hautvast RW, Tio RA, DeJongste MJ. Electrical neuromodulation improves myocardial perfusion and ameliorates refractory angina pectoris in patients with syndrome X: fad or future? European journal of pain. 2003;7(6):507-512.
- 34. Stein C, Dal Lago P, Ferreira JB, Casali KR, Plentz RD. Transcutaneous electrical nerve stimulation at different frequencies on heart rate variability in healthy subjects. Auton Neurosci. Dec 7 2011;165(2):205-208.
- 35. Silverdal J, Mourtzinis G, Stener-Victorin E, Mannheimer C, Manhem K. Antihypertensive effect of low-frequency transcutaneous electrical nerve stimulation (TENS) in comparison with drug treatment. Blood Press. Oct 2012;21(5):306-310.
- 36. Cramp FL, McCullough GR, Lowe AS, Walsh DM. Transcutaneous electric nerve stimulation: the effect of intensity on local and distal cutaneous blood flow and skin temperature in healthy subjects. Archives of physical medicine and rehabilitation. Jan 2002;83(1):5-9.
- 37. Cramp AF, Gilsenan C, Lowe AS, Walsh DM. High- and low-frequency transcutaneous electrical nerve stimulation affects cutaneous blood flow and skin temperature in healthy subjects. Clin Physiol. Mar 2000;20(2):150-157.
- 38. Indergand HJ, Morgan BJ. Effects of high-frequency transcutaneous electrical nerve stimulation on limb blood flow in healthy humans. Phys Ther. Apr 1994;74(4):361-367.
- 39. Kaada B, Vik-mo H, Rosland G, Woie L, Opstad PK. Transcutaneous nerve stimulation in patients with coronary arterial disease: hemodynamic and biochemical effects. Eur Heart J. May 1990;11(5):447-453.
- 40. Scudds RJ, Helewa A, Scudds RA. The effects of transcutaneous electrical nerve stimulation on skin temperature in asymptomatic subjects. Phys Ther. Jul 1995;75(7):621-628.
- 41. Tomasi FP, Chiappa G, Maldaner da Silva V, et al. Transcutaneous Electrical Nerve Stimulation Improves Exercise Tolerance in Healthy Subjects. Int J Sports Med. Jul 2015;36(8):661-665.
- 42. Bieuzen F, Pournot H, Roulland R, Hausswirth C. Recovery after high-intensity intermittent exercise in elite soccer players using VEINOPLUS sports technology for blood-flow stimulation. J Athl Train. Sep-Oct 2012;47(5):498-506.
- 43. Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. Nov-Dec 2014;7(6):871-877.
- 44. Eschweiler GW, Wegerer C, Schlotter W, et al. Left prefrontal activation predicts the therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) in major depression. Psychiatry Res. Oct 30 2000;99(3):161-172.
- 45. Farese S, Budmiger R, Aregger F, Bergmann I, Frey FJ, Uehlinger DE. Effect of transcutaneous electrical muscle stimulation and passive cycling movements on blood pressure and removal of urea and phosphate during hemodialysis. Am J Kidney Dis. Oct 2008;52(4):745-752.

- 46. Gazelius B, Stange K, Lind G, Meyerson BA, Linderoth B. Endoscopic transthoracic sympathectomy and peripheral microcirculation: effects of electric sympathetic chain stimulation, thermocoagulation, and anaesthetic agents. Acta Neurochir (Wien). Jun 2002;144(6):589-594; discussion 594.
- 47. Hsiao SH, Tsai LJ. A neurovascular transmission model for acupuncture-induced nitric oxide. J Acupunct Meridian Stud. Sep 2008;1(1):42-50.
- 48. Hideaki W, Tatsuya H, Shogo M, et al. Effect of 100 Hz electroacupuncture on salivary immunoglobulin A and the autonomic nervous system. Acupunct Med. Dec 2015;33(6):451-456.
- 49. Jung WS, Park SU, Park JM, et al. Changes in SPECT cerebral blood flow following Japanese style, superficial acupuncture at LI-4 and LI-11 in healthy volunteers. J Altern Complement Med. Apr 2011;17(4):357-362. doi: 310.1089/acm.2010.0331. Epub 2011 Apr 1087.
- 50. Kemler MA, Barendse GA, van Kleef M, Egbrink MG. Pain relief in complex regional pain syndrome due to spinal cord stimulation does not depend on vasodilation. Anesthesiology. Jun 2000;92(6):1653-1660.
- 51. Meglic U, Sorli J, Kosnik M, Lainscak M. Feasibility of transcutaneous electrical muscle stimulation in acute exacerbation of COPD. Wien Klin Wochenschr. Jun 2011;123(11-12):384-387.
- 52. Lawson D, Petrofsky JS. A randomized control study on the effect of biphasic electrical stimulation in a warm room on skin blood flow and healing rates in chronic wounds of patients with and without diabetes. Med Sci Monit. Jun 2007;13(6):CR258-263.
- 53. Khalil Z, Ogrin R, Darzins PJ. The effect of sensory nerve stimulation on sensory nerve function in people with peripheral neuropathy associated with diabetes. Neurol Res. Oct 2007;29(7):743-748.
- 54. Noble JG, Henderson G, Cramp AF, Walsh DM, Lowe AS. The effect of interferential therapy upon cutaneous blood flow in humans. Clin Physiol. Jan 2000;20(1):2-7.
- 55. Ngai SP, Jones AY. Changes in skin impedance and heart rate variability with the application of Acu-TENS to BL 13 (Feishu). J Altern Complement Med. Jun 2013;19(6):558-563.
- 56. Spincemaille GH, Klomp HM, Steyerberg EW, van Urk H, Habbema JD, group Es. Technical data and complications of spinal cord stimulation: data from a randomized trial on critical limb ischemia. Stereotact Funct Neurosurg. 2000;74(2):63-72.
- 57. Speer AM, Kimbrell TA, Wassermann EM, et al. Opposite effects of high and low-frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry. Dec 15 2000;48(12):1133-1141.
- Perlmutter JS, Mink JW, Bastian AJ, et al. Blood flow responds to deep brain stimulation of the thalamus. Neurology. May 14 2002;58(9):1388-1394.
- 59. Townsend RR, Sica DA. Beyond conventional considerations: newer devices used in blood pressure measurement and management. Adv Chronic Kidney Dis. Jan 2011;18(1):48-54.
- 60. Tordoir JH, Scheffers I, Schmidli J, et al. An implantable carotid sinus baroreflex activating system: surgical technique and short-term outcome from a multi-center feasibility trial for the treatment of resistant hypertension. Eur J Vasc Endovasc Surg. Apr 2007;33(4):414-421.
- 61. Thijssen DH, Ellenkamp R, Kooijman M, et al. A causal role for endothelin-1 in the vascular adaptation to skeletal muscle deconditioning in spinal cord injury. Arterioscler Thromb Vasc Biol. Feb 2007;27(2):325-331.

- 62. Chen CC, Johnson MI, McDonough S, Cramp F. The effect of transcutaneous electrical nerve stimulation on local and distal cutaneous blood flow following a prolonged heat stimulus in healthy subjects. Clin Physiol Funct Imaging. May 2007;27(3):154-161.
- 63. Forst T, Pfutzner A, Bauersachs R, et al. Comparison of the microvascular response to transcutaneous electrical nerve stimulation and post occlusive ischemia in the diabetic foot. J Diabetes Complications. Sep-Oct 1997;11(5):291-297.
- 64. Izumi M, Ikeuchi M, Mitani T, Taniguchi S, Tani T. Prevention of venous stasis in the lower limb by transcutaneous electrical nerve stimulation. Eur J Vasc Endovasc Surg. May 2010;39(5):642-645.
- 65. Johnson MI, Hajela VK, Ashton CH, Thompson JW. The effects of auricular transcutaneous electrical nerve stimulation (TENS) on experimental pain threshold and autonomic function in healthy subjects. Pain. Sep 1991;46(3):337-342.
- Ter Laan M, van Dijk JM, Elting JW, Fidler V, Staal MJ. The influence of transcutaneous electrical neurostimulation (TENS) on human cerebral blood flow velocities. Acta Neurochir (Wien). Aug 2010;152(8):1367-1373; discussion 1373.
- 67. Ngai SP, Jones AY, Hui-Chan CW, Ko FW, Hui DS. Effect of 4 weeks of Acu-TENS on functional capacity and beta-endorphin level in subjects with chronic obstructive pulmonary disease: a randomized controlled trial. Respir Physiol Neurobiol. Aug 31 2010;173(1):29-36.
- 68. McDowell BC, McElduff C, Lowe AS, Walsh DM, Baxter GD. The effect of high- and low-frequency H-wave therapy upon skin blood perfusion: evidence of frequency-specific effects. Clin Physiol. Nov 1999;19(6):450-457.
- 69. Franco OS, Paulitsch FS, Pereira AP, et al. Effects of different frequencies of transcutaneous electrical nerve stimulation on venous vascular reactivity. Braz J Med Biol Res. May 2014;47(5):411-418.
- 70. Ng MC, Jones AY, Cheng LC. The Role of Acu-TENS in Hemodynamic Recovery after Open-Heart Surgery. Evid Based Complement Alternat Med. 2011;2011:301974.
- 71. Sanderson JE, Tomlinson B, Lau MS, et al. Transcutaneous electrical nerve stimulation (TENS) affects autonomic cardiovascular reflexes. Clin Auton Res. Apr 1995;5(2):81-84.
- 72. Vilela-Martin JF, Giollo-Junior LT, Chiappa GR, et al. Effects of transcutaneous electrical nerve stimulation (TENS) on arterial stiffness and blood pressure in resistant hypertensive individuals: study protocol for a randomized controlled trial. Trials. Mar 29 2016;17:168.
- 73. Kamali F, Mirkhani H, Nematollahi A, Heidari S, Moosavi E, Mohamadi M. The Effect of Transcutaneous Electrical Nerve Stimulation of Sympathetic Ganglions and Acupuncture Points on Distal Blood Flow. J Acupunct Meridian Stud. Apr 2017;10(2):120-124.
- 74. Kjartansson J, Lundeberg T. Effects of electrical nerve stimulation (ENS) in ischemic tissue. Scand J Plast Reconstr Surg Hand Surg. 1990;24(2):129-134.
- 75. Bertalanffy A, Kober A, Bertalanffy P, et al. Transcutaneous electrical nerve stimulation reduces acute low back pain during emergency transport. Acad Emerg Med. Jul 2005;12(7):607-611.
- 76. Wikstrom SO, Svedman P, Svensson H, Tanweer AS. Effect of transcutaneous nerve stimulation on microcirculation in intact skin and blister wounds in healthy volunteers. Scand J Plast Reconstr Surg Hand Surg. Jun 1999;33(2):195-201.

- 77. Lu CC, Jan YM, Li TC, Hsieh CL. Electroacupuncture induces differential effects between Yin and Yang: a study using cutaneous blood flow and temperature recordings of the hand's dorsum and palm. Am J Chin Med. 2009;37(4):639-645.
- 78. Lin CF, Liao JM, Tsai SJ, et al. Depressor effect on blood pressure and flow elicited by electroacupuncture in normal subjects. Auton Neurosci. Aug 29 2003;107(1):60-64.
- 79. Czyrny JJ, Kaplan RE, Wilding GE, Purdy CH, Hirsh J. Electrical foot stimulation: a potential new deep venous thrombosis prophylaxis method. Vascular. Jan-Feb 2010;18(1):20-27.
- 80. Dobsak P, Tomandl J, Spinarova L, et al. Effects of neuromuscular electrical stimulation and aerobic exercise training on arterial stiffness and autonomic functions in patients with chronic heart failure. Artif Organs. Oct 2012;36(10):920-930.
- 81. Ho M, Huang LC, Chang YY, et al. Electroacupuncture reduces uterine artery blood flow impedance in infertile women. Taiwan J Obstet Gynecol. Jun 2009;48(2):148-151.
- 82. Ma YX, Ma LX, Liu XL, et al. A comparative study on the immediate effects of electroacupuncture at Sanyinjiao (SP6), Xuanzhong (GB39) and a non-meridian point, on menstrual pain and uterine arterial blood flow, in primary dysmenorrhea patients. Pain Med. Oct 2010;11(10):1564-1575.
- 83. Zhao ZQ, Jia SW, Hu S, Sun W. Evaluating the effectiveness of electro-acupuncture as a treatment for childhood autism using single photon emission computed tomography. Chin J Integr Med. Jan 2014;20(1):19-23.
- 84. Jones AYM, Ngai SPC. Acu-TENS lowers blood lactate levels and enhances heart rate recovery after exercise. Journal of Traditional Chinese Medical Sciences. 2014/07/01/ 2014;1(1):73-80.
- 85. Sluka KA, Judge MA, McColley MM, Reveiz PM, Taylor BM. Low-frequency TENS is less effective than high-frequency TENS at reducing inflammation-induced hyperalgesia in morphine-tolerant rats. European journal of pain. 2000;4(2):185-193.
- 86. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. Apr 2 2002;136(7):493-503.
- Neal B, MacMahon S, Chapman N, Blood Pressure Lowering Treatment Trialists C. Effects of ACE inhibitors, calcium antagonists, and other blood-pressure-lowering drugs: results of prospectively designed overviews of randomised trials. Blood Pressure Lowering Treatment Trialists' Collaboration. Lancet. Dec 9 2000;356(9246):1955-1964.
- Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. Dec 14 2002;360(9349):1903-1913.
- Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. May 19 2009;338:b1665.
- 90. Kaada B, Eielsen O. In search of mediators of skin vasodilation induced by transcutaneous nerve stimulation: II. Serotonin implicated. Gen Pharmacol. 1983;14(6):635-641.
- Hallén K, Hrafnkelsdóttir T, Jern S, Biber B, Mannheimer C, DuttaRoy S. Transcutaneous Electrical Nerve Stimulation Induces Vasodilation in Healthy Controls But Not in Refractory Angina Patients. Journal of Pain and Symptom Management. 2010;40(1):95-101.

- 92. Olyaei GR, Talebian S, Hadian MR, Bagheri H, Momadjed F. The effect of transcutaneous electrical nerve stimulation on sympathetic skin response. Electromyogr Clin Neurophysiol. Jan-Feb 2004;44(1):23-28.
- 93. Norrsell H, Eliasson T, Mannheimer C, et al. Effects of pacing-induced myocardial stress and spinal cord stimulation on whole body and cardiac norepinephrine spillover. Eur Heart J. Dec 1997;18(12):1890-1896.
- 94. Kalra A, Urban MO, Sluka KA. Blockade of opioid receptors in rostral ventral medulla prevents antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS). J Pharmacol Exp Ther. Jul 2001;298(1):257-263.
- 95. Mannheimer C, Carlsson CA, Vedin A, Wilhelmsson C. Transcutaneous electrical nerve stimulation (TENS) in angina pectoris. Pain. Sep 1986;26(3):291-300.
- 96. Mannheimer C, Carlsson CA, Ericson K, Vedin A, Wilhelmsson C. Transcutaneous electrical nerve stimulation in severe angina pectoris. Eur Heart J. Aug 1982;3(4):297-302.
- 97. Mannheimer C, Emanuelsson H, Waagstein F. The effect of transcutaneous electrical nerve stimulation (TENS) on catecholamine metabolism during pacing-induced angina pectoris and the influence of naloxone. Pain. Apr 1990;41(1):27-34.